Arash Ebrahimi Jarihani, Sahar Sarafi, Michael Köberle, J. Sturm, A. Tonello
{"title":"Characterization of On-Chip Interconnects: Case Study in 28 nm CMOS Technology","authors":"Arash Ebrahimi Jarihani, Sahar Sarafi, Michael Köberle, J. Sturm, A. Tonello","doi":"10.1109/Austrochip.2019.00028","DOIUrl":null,"url":null,"abstract":"Performance of a high-speed network on a chip is mainly affected by the performance of the global on-chip interconnects. This paper investigates a point-to-point transmission line interconnect to address the performance limitations due to the scaling problems of on-chip global interconnects in new CMOS technologies. A brief explanation is given about the basic properties of the transmission lines that should be considered. Moreover, the design methodology is given for designing the on-chip interconnect and understanding its behavior. Based on the different transmission line geometry, 3D EM simulations are done and S-parameters are carried out to analyze the effects of the different metal layers, width of the signal line, and space to shield layers of the interconnect. This results in a systematic understanding of the design of the on-chip interconnect and its performance dependence on various parameters. Finally, a 5 mm length on-chip lossy transmission line with serpentine shape and shielding layers is implemented in 8-metal-layer 28 nm CMOS standard technology.","PeriodicalId":6724,"journal":{"name":"2019 Austrochip Workshop on Microelectronics (Austrochip)","volume":"90 1","pages":"93-99"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Austrochip Workshop on Microelectronics (Austrochip)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Austrochip.2019.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Performance of a high-speed network on a chip is mainly affected by the performance of the global on-chip interconnects. This paper investigates a point-to-point transmission line interconnect to address the performance limitations due to the scaling problems of on-chip global interconnects in new CMOS technologies. A brief explanation is given about the basic properties of the transmission lines that should be considered. Moreover, the design methodology is given for designing the on-chip interconnect and understanding its behavior. Based on the different transmission line geometry, 3D EM simulations are done and S-parameters are carried out to analyze the effects of the different metal layers, width of the signal line, and space to shield layers of the interconnect. This results in a systematic understanding of the design of the on-chip interconnect and its performance dependence on various parameters. Finally, a 5 mm length on-chip lossy transmission line with serpentine shape and shielding layers is implemented in 8-metal-layer 28 nm CMOS standard technology.