An Iterative Algorithm to Optimize the Average Performance of Markov Chains with Finite States

Ryusei Fujita, K. Iwata, Hirosuke Yamamoto
{"title":"An Iterative Algorithm to Optimize the Average Performance of Markov Chains with Finite States","authors":"Ryusei Fujita, K. Iwata, Hirosuke Yamamoto","doi":"10.1109/ISIT.2019.8849856","DOIUrl":null,"url":null,"abstract":"We consider Markov chains with finite states, which have unique stationary distributions and satisfy the following conditions I)–III). I) Each state si has its own discrete parameter ti. II) Each state si has a local performance function f(ti). III) Each state si has a transition probability function pi, j(ti) from state si to state sj. In this paper, we give an iterative method to optimize the global average performance of the above Markov chains, which have unique stationary distributions for all sets of the parameters. This method is a generalization of the iterative method to construct the optimal AIFV-m code, which was proposed in our previous paper. But in this paper, the following two points are further refined besides the generalization. (i) We clarify the condition such that the iterative method always terminates and gives correct results although the iterative method is a kind of Las Vegas algorithm. (ii) We provide a closed-form expression of coefficients to solve the local optimization problem of each state.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"28 1","pages":"1902-1906"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We consider Markov chains with finite states, which have unique stationary distributions and satisfy the following conditions I)–III). I) Each state si has its own discrete parameter ti. II) Each state si has a local performance function f(ti). III) Each state si has a transition probability function pi, j(ti) from state si to state sj. In this paper, we give an iterative method to optimize the global average performance of the above Markov chains, which have unique stationary distributions for all sets of the parameters. This method is a generalization of the iterative method to construct the optimal AIFV-m code, which was proposed in our previous paper. But in this paper, the following two points are further refined besides the generalization. (i) We clarify the condition such that the iterative method always terminates and gives correct results although the iterative method is a kind of Las Vegas algorithm. (ii) We provide a closed-form expression of coefficients to solve the local optimization problem of each state.
有限状态马尔可夫链平均性能优化的迭代算法
我们考虑具有唯一平稳分布的有限状态马尔可夫链,它满足以下条件I) -III)。I)每个状态si都有自己的离散参数ti。II)每个状态si都有一个局部性能函数f(ti)。III)每个状态si都有一个从状态si到状态sj的转移概率函数pi, j(ti)。在本文中,我们给出了一种迭代方法来优化上述马尔可夫链的全局平均性能,这些马尔可夫链对所有参数集都具有唯一平稳分布。该方法是我们在上一篇文章中提出的构造最优AIFV-m码的迭代方法的推广。但本文在概括的基础上,进一步细化了以下两点。(i)澄清了迭代法虽然是一种拉斯维加斯算法,但总是终止并给出正确结果的条件。(ii)给出了求解各状态局部优化问题的系数的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信