An unsupervised feature selection by back-propagated weighting the non-Gaussianity score of independence components

Wachiravit Modecrua, Praisan Padungwiang, Worarat Krathu
{"title":"An unsupervised feature selection by back-propagated weighting the non-Gaussianity score of independence components","authors":"Wachiravit Modecrua, Praisan Padungwiang, Worarat Krathu","doi":"10.1109/ICITEED.2019.8929992","DOIUrl":null,"url":null,"abstract":"Feature selection is one of the commonly used technique in machine learning literature. It aims to reduce irrelevant, redundant, unneeded attributes from data that do not contribute to improve or even decrease the performance of analytical model. This paper proposes a new feature selection method that evaluate by back-propagated weighting the nongaussianity, Kurtosis, of the corresponding independent components. The nongaussianity scores are normalized using a suitable logistic function where the parameters of the logistic function are selected using an auto fitting curve technique. This proposed method is called the Logistic function of Kurtosis of Independent Component Analysis (KL-ICA). The results on various benchmarks show significant improvement of analytical model performance over existing technique.","PeriodicalId":6598,"journal":{"name":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"20 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2019.8929992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Feature selection is one of the commonly used technique in machine learning literature. It aims to reduce irrelevant, redundant, unneeded attributes from data that do not contribute to improve or even decrease the performance of analytical model. This paper proposes a new feature selection method that evaluate by back-propagated weighting the nongaussianity, Kurtosis, of the corresponding independent components. The nongaussianity scores are normalized using a suitable logistic function where the parameters of the logistic function are selected using an auto fitting curve technique. This proposed method is called the Logistic function of Kurtosis of Independent Component Analysis (KL-ICA). The results on various benchmarks show significant improvement of analytical model performance over existing technique.
一种基于反向传播加权独立分量非高斯分数的无监督特征选择方法
特征选择是机器学习文献中常用的技术之一。它旨在减少数据中不相关的、冗余的、不需要的属性,这些属性无助于提高甚至降低分析模型的性能。本文提出了一种新的特征选择方法,通过反向传播加权来评估相应独立分量的非方差、峰度。非高斯性分数使用合适的逻辑函数进行归一化,其中逻辑函数的参数使用自动拟合曲线技术进行选择。该方法被称为独立分量分析峰度的Logistic函数。在各种基准测试上的结果表明,与现有技术相比,分析模型的性能有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信