{"title":"Does it matter?: OMPSanitizer: an impact analyzer of reported data races in OpenMP programs","authors":"Wenwen Wang, Pei-Hung Lin","doi":"10.1145/3447818.3460379","DOIUrl":null,"url":null,"abstract":"Data races are a primary source of concurrency bugs in parallel programs. Yet, debugging data races is not easy, even with a large amount of data race detection tools. In particular, there still exists a manually-intensive and time-consuming investigation process after data races are reported by existing race detection tools. To address this issue, we present OMPSanitizer in this paper. OMPSanitizer employs a novel and semantic-aware impact analysis mechanism to assess the potential impact of detected data races so that developers can focus on data races with a high probability to produce a harmful impact. This way, OMPSanitizer can remove the heavy debugging burden of data races from developers and simultaneously enhance the debugging efficiency. We have implemented OMPSanitizer based on the widely-used dynamic binary instrumentation infrastructure, Intel Pin. Our evaluation results on a broad range of OpenMP programs from the DataRaceBench benchmark suite and an ECP Proxy application demonstrate that OMPSanitizer can precisely report the impact of data races detected by existing race detectors, e.g., Helgrind and ThreadSanitizer. We believe OMPSanitizer will provide a new perspective on automating the debugging support for data races in OpenMP programs.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Data races are a primary source of concurrency bugs in parallel programs. Yet, debugging data races is not easy, even with a large amount of data race detection tools. In particular, there still exists a manually-intensive and time-consuming investigation process after data races are reported by existing race detection tools. To address this issue, we present OMPSanitizer in this paper. OMPSanitizer employs a novel and semantic-aware impact analysis mechanism to assess the potential impact of detected data races so that developers can focus on data races with a high probability to produce a harmful impact. This way, OMPSanitizer can remove the heavy debugging burden of data races from developers and simultaneously enhance the debugging efficiency. We have implemented OMPSanitizer based on the widely-used dynamic binary instrumentation infrastructure, Intel Pin. Our evaluation results on a broad range of OpenMP programs from the DataRaceBench benchmark suite and an ECP Proxy application demonstrate that OMPSanitizer can precisely report the impact of data races detected by existing race detectors, e.g., Helgrind and ThreadSanitizer. We believe OMPSanitizer will provide a new perspective on automating the debugging support for data races in OpenMP programs.