Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials

E. Cherkaev, Minwoo Kim, Mikyoung Lim
{"title":"Geometric series expansion of the Neumann–Poincaré operator: Application to composite materials","authors":"E. Cherkaev, Minwoo Kim, Mikyoung Lim","doi":"10.1017/S0956792521000127","DOIUrl":null,"url":null,"abstract":"The Neumann-Poincare operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the Neumann-Poincare operator was developed in two dimensions based on geometric function theory. In this paper, we investigate geometric properties of composite materials by using this series expansion. In particular, we obtain explicit formulas for the polarization tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the Neumann--Poincare operator has a monotonic behavior with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain by using the properties of the polarization tensor corresponding to the domain.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0956792521000127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Neumann-Poincare operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the Neumann-Poincare operator was developed in two dimensions based on geometric function theory. In this paper, we investigate geometric properties of composite materials by using this series expansion. In particular, we obtain explicit formulas for the polarization tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the Neumann--Poincare operator has a monotonic behavior with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain by using the properties of the polarization tensor corresponding to the domain.
neumann - poincarcarr算子的几何级数展开:在复合材料中的应用
Neumann-Poincare算子是域边界上的奇异积分算子,在用边界积分公式求解电导率传输问题时自然出现。近年来,在几何函数理论的基础上,建立了二维Neumann-Poincare算子的级数表达式。本文利用该级数展开研究了复合材料的几何性能。特别地,我们根据相关的外部保角映射,得到了具有极值电导率的任意形状的包体或包体的周期阵列的极化张量和有效电导率的显式公式。此外,我们通过数值计算观察到,诺伊曼—庞加莱算子的谱对夹杂物的形状变形具有单调性。此外,利用与任意Lipschitz域对应的偏振张量的性质,导出了该域黎曼映射系数的不等式关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信