{"title":"Shape optimization of acoustic barriers based on subdivision surfaces BEM","authors":"Chuan Lu, Leilei Chen, Haibo Chen","doi":"10.2495/CMEM-V9-N2-108-116","DOIUrl":null,"url":null,"abstract":"This study presents a shape optimization approach for sound barrier using the isogeometric boundary element method based on subdivision surfaces. The geometry model is constructed through the subdivision scheme, and different control polygons/meshes describing the same curve/surface are used for geometry representation, boundary element analysis and optimization. The gradient-based optimization is implemented to minimize the sound pressure in the reference region. By subdivision coarsening treatment, the secondary processing improves the direct optimization results in reducing the oscillation of the optimized structure. The influence of different subdivision schemes on the obtained optimized configurations is studied in detail, which shows the potential of the secondary reverse processing for engineering prototype design.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"66 1","pages":"108-116"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V9-N2-108-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study presents a shape optimization approach for sound barrier using the isogeometric boundary element method based on subdivision surfaces. The geometry model is constructed through the subdivision scheme, and different control polygons/meshes describing the same curve/surface are used for geometry representation, boundary element analysis and optimization. The gradient-based optimization is implemented to minimize the sound pressure in the reference region. By subdivision coarsening treatment, the secondary processing improves the direct optimization results in reducing the oscillation of the optimized structure. The influence of different subdivision schemes on the obtained optimized configurations is studied in detail, which shows the potential of the secondary reverse processing for engineering prototype design.