Abel universal functions

Pub Date : 2022-10-26 DOI:10.4153/S0008414X22000578
S. Charpentier, A. Mouze
{"title":"Abel universal functions","authors":"S. Charpentier, A. Mouze","doi":"10.4153/S0008414X22000578","DOIUrl":null,"url":null,"abstract":"Abstract Given a sequence \n$\\varrho =(r_n)_n\\in [0,1)$\n tending to \n$1$\n , we consider the set \n${\\mathcal {U}}_A({\\mathbb {D}},\\varrho )$\n of Abel universal functions consisting of holomorphic functions f in the open unit disk \n$\\mathbb {D}$\n such that for any compact set K included in the unit circle \n${\\mathbb {T}}$\n , different from \n${\\mathbb {T}}$\n , the set \n$\\{z\\mapsto f(r_n \\cdot )\\vert _K:n\\in \\mathbb {N}\\}$\n is dense in the space \n${\\mathcal {C}}(K)$\n of continuous functions on K. It is known that the set \n${\\mathcal {U}}_A({\\mathbb {D}},\\varrho )$\n is residual in \n$H(\\mathbb {D})$\n . We prove that it does not coincide with any other classical sets of universal holomorphic functions. In particular, it is not even comparable in terms of inclusion to the set of holomorphic functions whose Taylor polynomials at \n$0$\n are dense in \n${\\mathcal {C}}(K)$\n for any compact set \n$K\\subset {\\mathbb {T}}$\n different from \n${\\mathbb {T}}$\n . Moreover, we prove that the class of Abel universal functions is not invariant under the action of the differentiation operator. Finally, an Abel universal function can be viewed as a universal vector of the sequence of dilation operators \n$T_n:f\\mapsto f(r_n \\cdot )$\n acting on \n$H(\\mathbb {D})$\n . Thus, we study the dynamical properties of \n$(T_n)_n$\n such as the multiuniversality and the (common) frequent universality. All the proofs are constructive.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008414X22000578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Given a sequence $\varrho =(r_n)_n\in [0,1)$ tending to $1$ , we consider the set ${\mathcal {U}}_A({\mathbb {D}},\varrho )$ of Abel universal functions consisting of holomorphic functions f in the open unit disk $\mathbb {D}$ such that for any compact set K included in the unit circle ${\mathbb {T}}$ , different from ${\mathbb {T}}$ , the set $\{z\mapsto f(r_n \cdot )\vert _K:n\in \mathbb {N}\}$ is dense in the space ${\mathcal {C}}(K)$ of continuous functions on K. It is known that the set ${\mathcal {U}}_A({\mathbb {D}},\varrho )$ is residual in $H(\mathbb {D})$ . We prove that it does not coincide with any other classical sets of universal holomorphic functions. In particular, it is not even comparable in terms of inclusion to the set of holomorphic functions whose Taylor polynomials at $0$ are dense in ${\mathcal {C}}(K)$ for any compact set $K\subset {\mathbb {T}}$ different from ${\mathbb {T}}$ . Moreover, we prove that the class of Abel universal functions is not invariant under the action of the differentiation operator. Finally, an Abel universal function can be viewed as a universal vector of the sequence of dilation operators $T_n:f\mapsto f(r_n \cdot )$ acting on $H(\mathbb {D})$ . Thus, we study the dynamical properties of $(T_n)_n$ such as the multiuniversality and the (common) frequent universality. All the proofs are constructive.
分享
查看原文
阿贝尔泛函数
摘要给定一个序列$\varrho =(r_n)_n\in[0,1)$趋近于$1$,我们考虑开放单位磁盘$\mathbb {D}$上由全纯函数f组成的Abel泛函数${\mathcal {U}}_A({\mathbb {D}}},\varrho)$的集合${\mathbb {T}}$对于包含在单位圆${\mathbb {T}}$中的任意紧集K,不同于${\mathbb {T}}$,集合$\{z\mapsto f(r_n \cdot)\vert _K:n\在\mathbb {n}\}$中在K上连续函数的空间${\mathcal {C}}(K)$中是稠密的,已知集合${\mathcal {U}}_A({\mathbb {D}},\varrho)$在$H(\mathbb {D})$中是残差。证明了它不与其他经典的全纯函数集重合。特别是,在包含方面,它甚至不能与在$0$处的泰勒多项式在${\mathcal {C}}(K)$中密集的全纯函数集相比,对于任何不同于${\mathbb {T}}$的紧集$K\子集{\mathbb {T}}$来说。此外,我们还证明了Abel泛函数在微分算子的作用下是不不变的。最后,阿贝尔泛函数可以看作是扩展算子序列$T_n:f\mapsto f(r_n \cdot)$作用于$H(\mathbb {D})$的一个泛向量。因此,我们研究了$(T_n)_n$的多普适性和(公)频繁普适性等动力学性质。所有的证明都是建设性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信