Richard B. Frankel , Dennis A. Bazylinski , Dirk Schüler
{"title":"Biomineralization of magnetic iron minerals in bacteria","authors":"Richard B. Frankel , Dennis A. Bazylinski , Dirk Schüler","doi":"10.1016/S0968-5677(98)00036-4","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetotactic bacteria orient and migrate along magnetic field lines. This ability is based on a submicron assembly of single-magnetic domain iron mineral particles that elegantly solves the problem of how to construct a magnetic dipole that is large enough to be oriented in the geomagnetic field at ambient temperature, yet fit inside a micron-sized cell. The solution is based on the ability of the bacteria to accumulate high concentrations of iron, and control the deposition, size and orientation of a specific iron mineral at specific locations in the cell.</p></div>","PeriodicalId":22050,"journal":{"name":"Supramolecular Science","volume":"5 3","pages":"Pages 383-390"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0968-5677(98)00036-4","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968567798000364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Magnetotactic bacteria orient and migrate along magnetic field lines. This ability is based on a submicron assembly of single-magnetic domain iron mineral particles that elegantly solves the problem of how to construct a magnetic dipole that is large enough to be oriented in the geomagnetic field at ambient temperature, yet fit inside a micron-sized cell. The solution is based on the ability of the bacteria to accumulate high concentrations of iron, and control the deposition, size and orientation of a specific iron mineral at specific locations in the cell.