{"title":"Effect of Microchannel On the Composite Cooling Performance of a Simulated Turbine Blade Leading Edge","authors":"Xinnan Chen, Zhigang Li, Jun Li","doi":"10.1115/1.4062756","DOIUrl":null,"url":null,"abstract":"\n As the turbine blade leading edge becomes one of the hottest regions in the engine, a microchannel structure was applied to further improve the cooling performance. Adiabatic and conjugate heat transfer analyses were conducted to compare the heat transfer and cooling performance of the leading edge with or without microchannels, while the influence of mass flow rate of coolant was also included. Based on the investigations on the effect of geometrical designs, the flow and composite cooling performance of the microchannels were further optimized. The results indicate that the internal heat transfer intensity was greatly enhanced with the arrangement of microchannels, while the adiabatic film coolant coverage was slightly deteriorated. On this basis, the composite cooling performance of the leading edge was effectively improved by at least 7.54%. However, the flow resistance of film cooling holes was obviously increased due to the obstruction of microchannels, and a larger thickness of microchannels would alleviate this feature. In addition, the composite cooling performance of the leading edge was further optimized by increasing the radius of microchannels, and the same effect was achieved by reducing the spanwise distance between the film cooling holes and the micro-jet holes. Compared with the leading edge model without microchannels, the former design increased the area-averaged overall cooling effectiveness of the leading edge by at least 11.17% under all the mass flow rates of coolant studied in this paper, while the latter design improved the composite cooling performance by at least 12.76%.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"107 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062756","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As the turbine blade leading edge becomes one of the hottest regions in the engine, a microchannel structure was applied to further improve the cooling performance. Adiabatic and conjugate heat transfer analyses were conducted to compare the heat transfer and cooling performance of the leading edge with or without microchannels, while the influence of mass flow rate of coolant was also included. Based on the investigations on the effect of geometrical designs, the flow and composite cooling performance of the microchannels were further optimized. The results indicate that the internal heat transfer intensity was greatly enhanced with the arrangement of microchannels, while the adiabatic film coolant coverage was slightly deteriorated. On this basis, the composite cooling performance of the leading edge was effectively improved by at least 7.54%. However, the flow resistance of film cooling holes was obviously increased due to the obstruction of microchannels, and a larger thickness of microchannels would alleviate this feature. In addition, the composite cooling performance of the leading edge was further optimized by increasing the radius of microchannels, and the same effect was achieved by reducing the spanwise distance between the film cooling holes and the micro-jet holes. Compared with the leading edge model without microchannels, the former design increased the area-averaged overall cooling effectiveness of the leading edge by at least 11.17% under all the mass flow rates of coolant studied in this paper, while the latter design improved the composite cooling performance by at least 12.76%.
期刊介绍:
Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.