{"title":"G3raphGround: Graph-Based Language Grounding","authors":"Mohit Bajaj, Lanjun Wang, L. Sigal","doi":"10.1109/ICCV.2019.00438","DOIUrl":null,"url":null,"abstract":"In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"4280-4289"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.