G3raphGround: Graph-Based Language Grounding

Mohit Bajaj, Lanjun Wang, L. Sigal
{"title":"G3raphGround: Graph-Based Language Grounding","authors":"Mohit Bajaj, Lanjun Wang, L. Sigal","doi":"10.1109/ICCV.2019.00438","DOIUrl":null,"url":null,"abstract":"In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"4280-4289"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In this paper we present an end-to-end framework for grounding of phrases in images. In contrast to previous works, our model, which we call GraphGround, uses graphs to formulate more complex, non-sequential dependencies among proposal image regions and phrases. We capture intra-modal dependencies using a separate graph neural network for each modality (visual and lingual), and then use conditional message-passing in another graph neural network to fuse their outputs and capture cross-modal relationships. This final representation results in grounding decisions. The framework supports many-to-many matching and is able to ground single phrase to multiple image regions and vice versa. We validate our design choices through a series of ablation studies and illustrate state-of-the-art performance on Flickr30k and ReferIt Game benchmark datasets.
G3raphGround:基于图形的语言基础
在本文中,我们提出了一个端到端的框架,用于图像中短语的基础。与之前的作品相比,我们的模型(我们称之为GraphGround)使用图形来制定提案图像区域和短语之间更复杂、非顺序的依赖关系。我们为每个模态(视觉和语言)使用单独的图神经网络捕获模态内依赖关系,然后在另一个图神经网络中使用条件消息传递来融合它们的输出并捕获跨模态关系。这种最终的表示导致接地决策。该框架支持多对多匹配,并能够将单个短语接地到多个图像区域,反之亦然。我们通过一系列的研究来验证我们的设计选择,并在Flickr30k和ReferIt Game基准数据集上展示了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信