Numerical results on noisy blown-up matrices

IF 0.3 Q4 MATHEMATICS
I. Fazekas, Sándor Pecsora
{"title":"Numerical results on noisy blown-up matrices","authors":"I. Fazekas, Sándor Pecsora","doi":"10.33039/ami.2020.07.001","DOIUrl":null,"url":null,"abstract":"We study the eigenvalues of large perturbed matrices. We consider an Hermitian pattern matrix 𝑃 of rank 𝑘 . We blow up 𝑃 to get a large block-matrix 𝐵 𝑛 . Then we generate a random noise 𝑊 𝑛 and add it to the blown up matrix to obtain the perturbed matrix 𝐴 𝑛 = 𝐵 𝑛 + 𝑊 𝑛 . Our aim is to find the eigenvalues of 𝐵 𝑛 . We obtain that under certain conditions 𝐴 𝑛 has 𝑘 ‘large’ eigenvalues which are called structural eigenvalues. These structural eigenvalues of 𝐴 𝑛 approximate the non-zero eigenvalues of 𝐵 𝑛 . We study a graphical method to distinguish the structural and the non-structural eigenvalues. We obtain similar results for the singular values of non-symmetric matrices.","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"9 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/ami.2020.07.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the eigenvalues of large perturbed matrices. We consider an Hermitian pattern matrix 𝑃 of rank 𝑘 . We blow up 𝑃 to get a large block-matrix 𝐵 𝑛 . Then we generate a random noise 𝑊 𝑛 and add it to the blown up matrix to obtain the perturbed matrix 𝐴 𝑛 = 𝐵 𝑛 + 𝑊 𝑛 . Our aim is to find the eigenvalues of 𝐵 𝑛 . We obtain that under certain conditions 𝐴 𝑛 has 𝑘 ‘large’ eigenvalues which are called structural eigenvalues. These structural eigenvalues of 𝐴 𝑛 approximate the non-zero eigenvalues of 𝐵 𝑛 . We study a graphical method to distinguish the structural and the non-structural eigenvalues. We obtain similar results for the singular values of non-symmetric matrices.
噪声爆破矩阵的数值结果
研究了大摄动矩阵的特征值。我们考虑一个秩为𝑘的厄密模式矩阵。我们将其放大,得到一个大的块矩阵𝑛。然后我们生成一个随机噪声𝑊𝑛,并将其加入到膨胀矩阵中,得到扰动后的矩阵变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量变量。我们的目的是求出𝑛的特征值。在一定条件下,我们得到:在一定条件下,变量𝑛具有𝑘“大”特征值,称为结构特征值。这些结构特征值近似于变量𝑛的非零特征值。研究了一种区分结构特征值和非结构特征值的图解方法。对于非对称矩阵的奇异值,我们也得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信