{"title":"Additive bases via Fourier analysis","authors":"Bodan Arsovski","doi":"10.1017/S0963548321000109","DOIUrl":null,"url":null,"abstract":"\n Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least \n \n \n \n$$|S| - m\\ln |G|$$\n\n \n elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least \n \n \n \n$$|G{|^{1 - c{ \\in ^l}}}$$\n\n \n for certain c=c(m) and \n \n \n \n$$ \\in = \\in (m) < 1$$\n\n \n ; we use the probabilistic method to give sharper values of c(m) and \n \n \n \n$$ \\in (m)$$\n\n \n in the case when G is a vector space; and we give new proofs of related known results.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"102 1","pages":"930-941"},"PeriodicalIF":0.9000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000109","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least
$$|S| - m\ln |G|$$
elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least
$$|G{|^{1 - c{ \in ^l}}}$$
for certain c=c(m) and
$$ \in = \in (m) < 1$$
; we use the probabilistic method to give sharper values of c(m) and
$$ \in (m)$$
in the case when G is a vector space; and we give new proofs of related known results.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.