Additive bases via Fourier analysis

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Bodan Arsovski
{"title":"Additive bases via Fourier analysis","authors":"Bodan Arsovski","doi":"10.1017/S0963548321000109","DOIUrl":null,"url":null,"abstract":"\n Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least \n \n \n \n$$|S| - m\\ln |G|$$\n\n \n elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least \n \n \n \n$$|G{|^{1 - c{ \\in ^l}}}$$\n\n \n for certain c=c(m) and \n \n \n \n$$ \\in = \\in (m) < 1$$\n\n \n ; we use the probabilistic method to give sharper values of c(m) and \n \n \n \n$$ \\in (m)$$\n\n \n in the case when G is a vector space; and we give new proofs of related known results.","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":"102 1","pages":"930-941"},"PeriodicalIF":0.9000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000109","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in = \in (m) < 1$$ ; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.
通过傅里叶分析的加性基
将Alon, Linial, Meshulam的结果推广到阿贝尔群,证明了如果G是指数为m的有限阿贝尔群,且S是G的元素序列,使得S的任何子序列至少含有$$|S| - m\ln |G|$$个元素生成G,则S是G的可加基。我们还证明了对于c=c(m)和$$ \in = \in (m) < 1$$,任意l个G的生成集的加性张成包含一个至少为$$|G{|^{1 - c{ \in ^l}}}$$的子群的余集;当G是向量空间时,我们使用概率方法给出更清晰的c(m)和$$ \in (m)$$值;并对相关已知结果给出了新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信