Scene-Text-Detection Method Robust Against Orientation and Discontiguous Components of Characters

Rei Endo, Yoshihiko Kawai, H. Sumiyoshi, Masanori Sano
{"title":"Scene-Text-Detection Method Robust Against Orientation and Discontiguous Components of Characters","authors":"Rei Endo, Yoshihiko Kawai, H. Sumiyoshi, Masanori Sano","doi":"10.1109/CVPRW.2017.130","DOIUrl":null,"url":null,"abstract":"Scene-text detection in natural-scene images is an important technique because scene texts contain location information such as names of places and buildings, but many difficulties still remain regarding practical use. In this paper, we tackle two problems of scene-text detection. The first is the discontiguous component problem in specific languages that contain characters consisting of discontiguous components. The second is the multi-orientation problem in all languages. To solve these two problems, we propose a connected-component-based scene-text-detection method. Our proposed method involves our novel neighbor-character search method using a synthesizable descriptor for the discontiguous-component problems and our novel region descriptor called the rotated bounding box descriptors (RBBs) for rotated characters. We also evaluated our proposed scene-text-detection method by using the well-known MSRA-TD500 dataset that includes rotated characters with discontiguous components.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"61 1","pages":"941-949"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Scene-text detection in natural-scene images is an important technique because scene texts contain location information such as names of places and buildings, but many difficulties still remain regarding practical use. In this paper, we tackle two problems of scene-text detection. The first is the discontiguous component problem in specific languages that contain characters consisting of discontiguous components. The second is the multi-orientation problem in all languages. To solve these two problems, we propose a connected-component-based scene-text-detection method. Our proposed method involves our novel neighbor-character search method using a synthesizable descriptor for the discontiguous-component problems and our novel region descriptor called the rotated bounding box descriptors (RBBs) for rotated characters. We also evaluated our proposed scene-text-detection method by using the well-known MSRA-TD500 dataset that includes rotated characters with discontiguous components.
一种抗方向和字符不连续成分的场景文本检测方法
自然场景图像中的场景文本检测是一项重要的技术,因为场景文本包含地点和建筑物的名称等位置信息,但在实际应用中仍存在许多困难。本文主要研究了场景文本检测中的两个问题。首先是包含由不连续组件组成的字符的特定语言中的不连续组件问题。二是所有语言的多方位问题。为了解决这两个问题,我们提出了一种基于连接组件的场景文本检测方法。我们提出的方法包括使用可合成描述符的新的邻字符搜索方法来解决不连续分量问题,以及使用称为旋转边界框描述符(RBBs)的新的区域描述符来解决旋转字符。我们还通过使用著名的MSRA-TD500数据集评估了我们提出的场景文本检测方法,该数据集包括具有不连续成分的旋转字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信