T. Dam, Mahardhika Pratama, Md Meftahul Ferdaus, S. Anavatti, Hussein Abbas
{"title":"Scalable Adversarial Online Continual Learning","authors":"T. Dam, Mahardhika Pratama, Md Meftahul Ferdaus, S. Anavatti, Hussein Abbas","doi":"10.48550/arXiv.2209.01558","DOIUrl":null,"url":null,"abstract":"Adversarial continual learning is effective for continual learning problems because of the presence of feature alignment process generating task-invariant features having low susceptibility to the catastrophic forgetting problem. Nevertheless, the ACL method imposes considerable complexities because it relies on task-specific networks and discriminators. It also goes through an iterative training process which does not fit for online (one-epoch) continual learning problems. This paper proposes a scalable adversarial continual learning (SCALE) method putting forward a parameter generator transforming common features into task-specific features and a single discriminator in the adversarial game to induce common features. The training process is carried out in meta-learning fashions using a new combination of three loss functions. SCALE outperforms prominent baselines with noticeable margins in both accuracy and execution time.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"39 1","pages":"373-389"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Adversarial continual learning is effective for continual learning problems because of the presence of feature alignment process generating task-invariant features having low susceptibility to the catastrophic forgetting problem. Nevertheless, the ACL method imposes considerable complexities because it relies on task-specific networks and discriminators. It also goes through an iterative training process which does not fit for online (one-epoch) continual learning problems. This paper proposes a scalable adversarial continual learning (SCALE) method putting forward a parameter generator transforming common features into task-specific features and a single discriminator in the adversarial game to induce common features. The training process is carried out in meta-learning fashions using a new combination of three loss functions. SCALE outperforms prominent baselines with noticeable margins in both accuracy and execution time.