Scalable Adversarial Online Continual Learning

T. Dam, Mahardhika Pratama, Md Meftahul Ferdaus, S. Anavatti, Hussein Abbas
{"title":"Scalable Adversarial Online Continual Learning","authors":"T. Dam, Mahardhika Pratama, Md Meftahul Ferdaus, S. Anavatti, Hussein Abbas","doi":"10.48550/arXiv.2209.01558","DOIUrl":null,"url":null,"abstract":"Adversarial continual learning is effective for continual learning problems because of the presence of feature alignment process generating task-invariant features having low susceptibility to the catastrophic forgetting problem. Nevertheless, the ACL method imposes considerable complexities because it relies on task-specific networks and discriminators. It also goes through an iterative training process which does not fit for online (one-epoch) continual learning problems. This paper proposes a scalable adversarial continual learning (SCALE) method putting forward a parameter generator transforming common features into task-specific features and a single discriminator in the adversarial game to induce common features. The training process is carried out in meta-learning fashions using a new combination of three loss functions. SCALE outperforms prominent baselines with noticeable margins in both accuracy and execution time.","PeriodicalId":74091,"journal":{"name":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","volume":"39 1","pages":"373-389"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge discovery in databases : European Conference, ECML PKDD ... : proceedings. ECML PKDD (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.01558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adversarial continual learning is effective for continual learning problems because of the presence of feature alignment process generating task-invariant features having low susceptibility to the catastrophic forgetting problem. Nevertheless, the ACL method imposes considerable complexities because it relies on task-specific networks and discriminators. It also goes through an iterative training process which does not fit for online (one-epoch) continual learning problems. This paper proposes a scalable adversarial continual learning (SCALE) method putting forward a parameter generator transforming common features into task-specific features and a single discriminator in the adversarial game to induce common features. The training process is carried out in meta-learning fashions using a new combination of three loss functions. SCALE outperforms prominent baselines with noticeable margins in both accuracy and execution time.
可扩展的对抗在线持续学习
由于存在特征对齐过程,产生的任务不变特征对灾难性遗忘问题的敏感性较低,因此对抗性持续学习对持续学习问题是有效的。然而,ACL方法带来了相当大的复杂性,因为它依赖于特定于任务的网络和鉴别器。它还经历了一个迭代的训练过程,这并不适合在线(一个epoch)持续学习问题。本文提出了一种可扩展的对抗持续学习(SCALE)方法,提出了一个参数生成器将共同特征转化为特定任务的特征,并在对抗博弈中使用单个鉴别器来诱导共同特征。训练过程以元学习的方式进行,使用三个损失函数的新组合。SCALE在准确性和执行时间上都优于显著的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信