{"title":"CQNN: Convolutional Quadratic Neural Networks","authors":"Pranav Mantini, Shishir K. Shah","doi":"10.1109/ICPR48806.2021.9413207","DOIUrl":null,"url":null,"abstract":"Image classification is a fundamental task in computer vision. A variety of deep learning models based on the Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improvements have been proposed over the years, where broader, deeper, and denser networks have been constructed. However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classification. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results show a keen improvement in classification accuracy with quadratic neurons over linear neurons.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"12 1","pages":"9819-9826"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Image classification is a fundamental task in computer vision. A variety of deep learning models based on the Convolutional Neural Network (CNN) architecture have proven to be an efficient solution. Numerous improvements have been proposed over the years, where broader, deeper, and denser networks have been constructed. However, the atomic operation for these models has remained a linear unit (single neuron). In this work, we pursue an alternative dimension by hypothesizing the atomic operation to be performed by a quadratic unit. We construct convolutional layers using quadratic neurons for feature extraction and subsequently use dense layers for classification. We perform analysis to quantify the implication of replacing linear neurons with quadratic units. Results show a keen improvement in classification accuracy with quadratic neurons over linear neurons.