Super jeu de taquin and combinatorics of super tableaux of type A

Nohra Hage
{"title":"Super jeu de taquin and combinatorics of super tableaux of type A","authors":"Nohra Hage","doi":"10.1142/S0218196722500394","DOIUrl":null,"url":null,"abstract":"This paper presents a combinatorial study of the super plactic monoid of type A, which is related to the representations of the general linear Lie superalgebra. We introduce the analogue of the Schützenberger’s jeu de taquin on the structure of super tableaux over a signed alphabet. We show that this procedure which transforms super skew tableaux into super Young tableaux is compatible with the super plactic congruence and it is confluent. We deduce properties relating the super jeu de taquin to insertion algorithms on super tableaux. Moreover, we introduce the super evacuation procedure as an involution on super tableaux and we show its compatibility with the super plactic congruence. Finally, we describe the super jeu de taquin in terms of Fomin’s growth diagrams in order to give a combinatorial version of the super Littlewood–Richardson rule.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"21 1","pages":"929-952"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218196722500394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a combinatorial study of the super plactic monoid of type A, which is related to the representations of the general linear Lie superalgebra. We introduce the analogue of the Schützenberger’s jeu de taquin on the structure of super tableaux over a signed alphabet. We show that this procedure which transforms super skew tableaux into super Young tableaux is compatible with the super plactic congruence and it is confluent. We deduce properties relating the super jeu de taquin to insertion algorithms on super tableaux. Moreover, we introduce the super evacuation procedure as an involution on super tableaux and we show its compatibility with the super plactic congruence. Finally, we describe the super jeu de taquin in terms of Fomin’s growth diagrams in order to give a combinatorial version of the super Littlewood–Richardson rule.
超级牛仔和超级A型造型的组合
本文给出了与一般线性李超代数表示有关的a型超单调群的组合研究。我们介绍了sch曾伯格的jeu de taquin在符号字母表上的超级表的结构上的类比。我们证明了将超斜图转化为超杨图的过程与超平同余是相容的,并且是合流的。我们推导了超级表上插入算法与超级表上插入算法之间的关系。此外,我们还引入了超疏散过程作为超场景的一种对合,并证明了它与超plactic同余的相容性。最后,我们根据福明的增长图描述超级巨巨巨巨,以便给出超级Littlewood-Richardson规则的组合版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信