Who's This? Developer Identification Using IDE Event Data

J. Wilkie, Ziad Al Halabi, Alperen Karaoglu, Jiafeng Liao, George Ndungu, Chaiyong Ragkhitwetsagul, M. Paixão, J. Krinke
{"title":"Who's This? Developer Identification Using IDE Event Data","authors":"J. Wilkie, Ziad Al Halabi, Alperen Karaoglu, Jiafeng Liao, George Ndungu, Chaiyong Ragkhitwetsagul, M. Paixão, J. Krinke","doi":"10.1145/3196398.3196461","DOIUrl":null,"url":null,"abstract":"This paper presents a technique to identify a developer based on their IDE event data. We exploited the KaVE data set which recorded IDE activities from 85 developers with 11M events. We found that using an SVM with a linear kernel on raw event count outperformed k-NN in identifying developers with an accuracy of 0.52. Moreover, after setting the optimal number of events and sessions to train the classifier, we achieved a higher accuracy of 0.69 and 0.71 respectively. The findings shows that we can identify developers based on their IDE event data. The technique can be expanded further to group similar developers for IDE feature recommendations.","PeriodicalId":6639,"journal":{"name":"2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR)","volume":"13 1","pages":"90-93"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196398.3196461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a technique to identify a developer based on their IDE event data. We exploited the KaVE data set which recorded IDE activities from 85 developers with 11M events. We found that using an SVM with a linear kernel on raw event count outperformed k-NN in identifying developers with an accuracy of 0.52. Moreover, after setting the optimal number of events and sessions to train the classifier, we achieved a higher accuracy of 0.69 and 0.71 respectively. The findings shows that we can identify developers based on their IDE event data. The technique can be expanded further to group similar developers for IDE feature recommendations.
这是谁?使用IDE事件数据识别开发人员
本文介绍了一种基于IDE事件数据识别开发人员的技术。我们利用了KaVE数据集,该数据集记录了来自85个开发人员的IDE活动和1100万个事件。我们发现,在原始事件计数上使用具有线性核的SVM在识别开发人员方面优于k-NN,准确率为0.52。此外,在设置了训练分类器的最优事件数和会话数后,我们分别达到了0.69和0.71的更高准确率。研究结果表明,我们可以根据IDE事件数据来识别开发人员。该技术可以进一步扩展,以便对类似的开发人员进行分组,以获得IDE特性建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信