{"title":"Contribution of Gut Microbiome to Human Health and the Metabolism or Toxicity of Drugs and Natural Products","authors":"P. Kittakoop","doi":"10.5772/INTECHOPEN.92840","DOIUrl":null,"url":null,"abstract":"Trillions of microorganisms with a complex and diverse community are in the human gastrointestinal tract. Gut microbial genomes have much more genes than human genome, thus having a variety of enzymes for many metabolic activities; therefore, gut microbiota is recognized as an “organ” that has essential functions to human health. There are interactions between host and gut microbiome, and there are correlations between gut microbiome in the healthy state and in certain disease states, such as cancer, liver diseases, diabetes, and obesity. Gut microbiota can produce metabolites from nutrients of dietary sources and from drug metabolisms; these metabolites, for example, short-chain fatty acids (SCFAs), have substantial effects on human health. Drug-microbiome interactions play a crucial role in therapeutic efficiency. Some drugs are able to change compositions of gut microbiota, which can lead to either enhance or reduce therapeutic efficiency. This chapter provides an overview of roles of gut microbiota in human health and diseases and recent research studies on the metabolism or toxicity of drugs and natural products. Since gut bacteria considerably contribute to drug metabolism, research on the influence of gut microbiome on drug candidates (or natural products) should be part of the drug development processes.","PeriodicalId":37790,"journal":{"name":"Human Microbiome Journal","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Microbiome Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.92840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
Trillions of microorganisms with a complex and diverse community are in the human gastrointestinal tract. Gut microbial genomes have much more genes than human genome, thus having a variety of enzymes for many metabolic activities; therefore, gut microbiota is recognized as an “organ” that has essential functions to human health. There are interactions between host and gut microbiome, and there are correlations between gut microbiome in the healthy state and in certain disease states, such as cancer, liver diseases, diabetes, and obesity. Gut microbiota can produce metabolites from nutrients of dietary sources and from drug metabolisms; these metabolites, for example, short-chain fatty acids (SCFAs), have substantial effects on human health. Drug-microbiome interactions play a crucial role in therapeutic efficiency. Some drugs are able to change compositions of gut microbiota, which can lead to either enhance or reduce therapeutic efficiency. This chapter provides an overview of roles of gut microbiota in human health and diseases and recent research studies on the metabolism or toxicity of drugs and natural products. Since gut bacteria considerably contribute to drug metabolism, research on the influence of gut microbiome on drug candidates (or natural products) should be part of the drug development processes.
期刊介绍:
The innumerable microbes living in and on our bodies are known to affect human wellbeing, but our knowledge of their role is still at the very early stages of understanding. Human Microbiome is a new open access journal dedicated to research on the impact of the microbiome on human health and disease. The journal will publish original research, reviews, comments, human microbe descriptions and genome, and letters. Topics covered will include: the repertoire of human-associated microbes, therapeutic intervention, pathophysiology, experimental models, physiological, geographical, and pathological changes, and technical reports; genomic, metabolomic, transcriptomic, and culturomic approaches are welcome.