Line configurations and $r$-Stirling partitions

IF 0.4 Q4 MATHEMATICS, APPLIED
B. Rhoades, A. Wilson
{"title":"Line configurations and $r$-Stirling partitions","authors":"B. Rhoades, A. Wilson","doi":"10.4310/JOC.2019.V10.N3.A1","DOIUrl":null,"url":null,"abstract":"A set partition of $[n] := \\{1, 2, \\dots, n \\}$ is called {\\em $r$-Stirling} if the numbers $1, 2, \\dots, r$ belong to distinct blocks. Haglund, Rhoades, and Shimozono constructed graded ring $R_{n,k}$ depending on two positive integers $k \\leq n$ whose algebraic properties are governed by the combinatorics of ordered set partitions of $[n]$ with $k$ blocks. We introduce a variant $R_{n,k}^{(r)}$ of this quotient for ordered $r$-Stirling partitions which depends on three integers $r \\leq k \\leq n$. We describe the standard monomial basis of $R_{n,k}^{(r)}$ and use the combinatorial notion of the {\\em coinversion code} of an ordered set partition to reprove and generalize some results of Haglund et.\\ al.\\ in a more direct way. Furthermore, we introduce a variety $X_{n,k}^{(r)}$ of line arrangements whose cohomology is presented as the integral form of $R_{n,k}^{(r)}$, generalizing results of Pawlowski and Rhoades.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2019.V10.N3.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9

Abstract

A set partition of $[n] := \{1, 2, \dots, n \}$ is called {\em $r$-Stirling} if the numbers $1, 2, \dots, r$ belong to distinct blocks. Haglund, Rhoades, and Shimozono constructed graded ring $R_{n,k}$ depending on two positive integers $k \leq n$ whose algebraic properties are governed by the combinatorics of ordered set partitions of $[n]$ with $k$ blocks. We introduce a variant $R_{n,k}^{(r)}$ of this quotient for ordered $r$-Stirling partitions which depends on three integers $r \leq k \leq n$. We describe the standard monomial basis of $R_{n,k}^{(r)}$ and use the combinatorial notion of the {\em coinversion code} of an ordered set partition to reprove and generalize some results of Haglund et.\ al.\ in a more direct way. Furthermore, we introduce a variety $X_{n,k}^{(r)}$ of line arrangements whose cohomology is presented as the integral form of $R_{n,k}^{(r)}$, generalizing results of Pawlowski and Rhoades.
Line配置和$r$-Stirling分区
如果数字$1, 2, \dots, r$属于不同的块,则将{\em}$[n] := \{1, 2, \dots, n \}${\em的集合分区称为}{\em$r$} -Stirling。Haglund, Rhoades和Shimozono根据两个正整数$k \leq n$构造了梯度环$R_{n,k}$,这两个正整数的代数性质由$[n]$与$k$块的有序集划分的组合控制。对于依赖于三个整数$r \leq k \leq n$的有序$r$ -Stirling分区,我们引入了这个商的一个变体$R_{n,k}^{(r)}$。我们描述了$R_{n,k}^{(r)}$的标准单项式基,并利用有序集划分的{\em共反演码}的组合概念,更直接地修正和推广了Haglund等人的一些结果。进一步,我们引入了各种$X_{n,k}^{(r)}$的线排列,它们的上同调被表示为$R_{n,k}^{(r)}$的积分形式,推广了Pawlowski和Rhoades的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信