{"title":"Short-term Traffic Flow Prediction Method in Bayesian Networks Based on Quantile Regression","authors":"Jing Luo","doi":"10.7307/ptt.v32i6.3394","DOIUrl":null,"url":null,"abstract":"821 ABSTRACT With the popularization of intelligent transportation system and Internet of vehicles, the traffic flow data on the urban road network can be more easily obtained in large quantities. This provides data support for shortterm traffic flow prediction based on real-time data. Of all the challenges and difficulties faced in the research of short-term traffic flow prediction, this paper intends to address two: one is the difficulty of short-term traffic flow prediction caused by spatiotemporal correlation of traffic flow changes between upstream and downstream intersections; the other is the influence of deviation of traffic flow caused by abnormal conditions on short-term traffic flow prediction. This paper proposes a Bayesian network short-term traffic flow prediction method based on quantile regression. By this method the trouble caused by spatiotemporal correlation of traffic flow prediction could be effectively and efficiently solved. At the same time, the prediction of traffic flow change under abnormal conditions has higher accuracy.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"1 1","pages":"821-835"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v32i6.3394","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
821 ABSTRACT With the popularization of intelligent transportation system and Internet of vehicles, the traffic flow data on the urban road network can be more easily obtained in large quantities. This provides data support for shortterm traffic flow prediction based on real-time data. Of all the challenges and difficulties faced in the research of short-term traffic flow prediction, this paper intends to address two: one is the difficulty of short-term traffic flow prediction caused by spatiotemporal correlation of traffic flow changes between upstream and downstream intersections; the other is the influence of deviation of traffic flow caused by abnormal conditions on short-term traffic flow prediction. This paper proposes a Bayesian network short-term traffic flow prediction method based on quantile regression. By this method the trouble caused by spatiotemporal correlation of traffic flow prediction could be effectively and efficiently solved. At the same time, the prediction of traffic flow change under abnormal conditions has higher accuracy.
期刊介绍:
This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology.
The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee.
The received papers are subject to peer review in accordance with the recommendations for international scientific journals.
The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering.
The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.