Z. Nie, Yipeng Wu, Chaojie Zhang, W. Mori, C. Joshi, W. Lu, C. Pai, J. Hua, Jyhpyng Wang
{"title":"Ultra-short pulse generation from mid-IR to THz range using plasma wakes and relativistic ionization fronts","authors":"Z. Nie, Yipeng Wu, Chaojie Zhang, W. Mori, C. Joshi, W. Lu, C. Pai, J. Hua, Jyhpyng Wang","doi":"10.1063/5.0039301","DOIUrl":null,"url":null,"abstract":"This paper discusses numerical and experimental results on frequency downshifting and upshifting of a 10 $\\mu$m infrared laser to cover the entire wavelength (frequency) range from $\\lambda$=1-150 $\\mu$m ($\\nu$=300-2 THz) using two different plasma techniques. The first plasma technique utilizes frequency downshifting of the drive laser pulse in a nonlinear plasma wake. Based on this technique, we have proposed and demonstrated that in a tailored plasma structure multi-millijoule energy, single-cycle, long-wavelength IR (3-20 $\\mu$m) pulses can be generated by using an 810 nm Ti:sapphire drive laser. Here we extend this idea to the THz frequency regime. We show that sub-joule, terawatts, single-cycle terahertz (2-12 THz, or 150-25 $\\mu$m) pulses can be generated by replacing the drive laser with a picosecond 10 $\\mu$m CO$_2$ laser and a different shaped plasma structure. The second plasma technique employs frequency upshifting by colliding a CO$_2$ laser with a rather sharp relativistic ionization front created by ionization of a gas in less than half cycle (17 fs) of the CO$_2$ laser. Even though the electrons in the ionization front carry no energy, the frequency of the CO$_2$ laser can be upshifted due to the relativistic Doppler effect as the CO$_2$ laser pulse enters the front. The wavelength can be tuned from 1-10 $\\mu$m by simply changing the electron density of the front. While the upshifted light with $5 <\\lambda(\\mu$m$)< 10$ propagates in the forward direction, that with $1 <\\lambda(\\mu$m$)< 5$ is back-reflected. These two plasma techniques seem extremely promising for covering the entire molecular fingerprint region.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0039301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper discusses numerical and experimental results on frequency downshifting and upshifting of a 10 $\mu$m infrared laser to cover the entire wavelength (frequency) range from $\lambda$=1-150 $\mu$m ($\nu$=300-2 THz) using two different plasma techniques. The first plasma technique utilizes frequency downshifting of the drive laser pulse in a nonlinear plasma wake. Based on this technique, we have proposed and demonstrated that in a tailored plasma structure multi-millijoule energy, single-cycle, long-wavelength IR (3-20 $\mu$m) pulses can be generated by using an 810 nm Ti:sapphire drive laser. Here we extend this idea to the THz frequency regime. We show that sub-joule, terawatts, single-cycle terahertz (2-12 THz, or 150-25 $\mu$m) pulses can be generated by replacing the drive laser with a picosecond 10 $\mu$m CO$_2$ laser and a different shaped plasma structure. The second plasma technique employs frequency upshifting by colliding a CO$_2$ laser with a rather sharp relativistic ionization front created by ionization of a gas in less than half cycle (17 fs) of the CO$_2$ laser. Even though the electrons in the ionization front carry no energy, the frequency of the CO$_2$ laser can be upshifted due to the relativistic Doppler effect as the CO$_2$ laser pulse enters the front. The wavelength can be tuned from 1-10 $\mu$m by simply changing the electron density of the front. While the upshifted light with $5 <\lambda(\mu$m$)< 10$ propagates in the forward direction, that with $1 <\lambda(\mu$m$)< 5$ is back-reflected. These two plasma techniques seem extremely promising for covering the entire molecular fingerprint region.