Adiabatic approximation in a resonance capture problem

IF 0.5 Q3 MATHEMATICS
L. Kalyakin
{"title":"Adiabatic approximation in a resonance capture problem","authors":"L. Kalyakin","doi":"10.13108/2017-9-3-61","DOIUrl":null,"url":null,"abstract":". By means of the averaging method, we analyze two model problems on capture into resonance that leads us to the adiabatic approximation in the leading term in the asymptotics. The main aim is an approximate (by using a small parameter) description of the domain of capture into resonance. This domain is in the phase plane and it is formed by the initial points for the resonance solutions with an unboundedly increasing energy. The capture domain depends on an additional parameter involved in the equation. We show that the adiabatic approximation fails as the capture domain becomes narrow. In this case we have to modify substantially the averaging method. As a result, a system of nonlinear differential equations arises for the leading term in the asymptotics and this system is not always integrable.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"131 1","pages":"61-75"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-3-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. By means of the averaging method, we analyze two model problems on capture into resonance that leads us to the adiabatic approximation in the leading term in the asymptotics. The main aim is an approximate (by using a small parameter) description of the domain of capture into resonance. This domain is in the phase plane and it is formed by the initial points for the resonance solutions with an unboundedly increasing energy. The capture domain depends on an additional parameter involved in the equation. We show that the adiabatic approximation fails as the capture domain becomes narrow. In this case we have to modify substantially the averaging method. As a result, a system of nonlinear differential equations arises for the leading term in the asymptotics and this system is not always integrable.
共振俘获问题中的绝热近似
. 利用平均法,我们分析了两个关于捕获到共振的模型问题,这些问题导致我们在渐近中得到了前导项的绝热近似。主要目的是近似(通过使用一个小参数)描述捕获到共振的域。该区域位于相平面上,由能量无界递增的共振解的初始点构成。捕获域取决于方程中涉及的附加参数。我们表明,当捕获域变窄时,绝热近似失效。在这种情况下,我们必须大幅度地修改平均方法。其结果是,在渐近中出现一个非线性微分方程系统,该系统并不总是可积的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信