Nurturing Plasmonic Properties of Nanocomposite Thin Films: The Importance of Optimum Oblate Shape

R. Laha
{"title":"Nurturing Plasmonic Properties of Nanocomposite Thin Films: The Importance of Optimum Oblate Shape","authors":"R. Laha","doi":"10.32732/jma.2021.10.2.73","DOIUrl":null,"url":null,"abstract":"Metal nanoparticles (MNPs) embedded dielectric thin films are very crucial for many optoelectronic applications. This report investigates various ways of tuning the plasmonic properties of such nanocomposite thin films. For this, the well-known plasmon resonance condition was first generalized to include the shape and volume fraction of MNPs. This was followed by deriving an empirical formula for the resonance position (λR) which was worked out to be the positive root of a quadratic equation. The coefficients of the deduced quadratic relation involve the parameters obtained from the empirical fit to some of the experimental dielectric functions of MNPs available in literature. The derived working formula enables research community to tune the LSPR of nanocomposites in the whole range of visible wavelengths. The derived formula also concluded that with known lower volume fractions, shape of MNPs affects λR the most, compared to the other parameters. The derived formula was validated by calculating the full extinction spectra. It was shown for the first time that there exists an optimum value of oblate shape to give maximum resonance for a given nanocomposite.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/jma.2021.10.2.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Metal nanoparticles (MNPs) embedded dielectric thin films are very crucial for many optoelectronic applications. This report investigates various ways of tuning the plasmonic properties of such nanocomposite thin films. For this, the well-known plasmon resonance condition was first generalized to include the shape and volume fraction of MNPs. This was followed by deriving an empirical formula for the resonance position (λR) which was worked out to be the positive root of a quadratic equation. The coefficients of the deduced quadratic relation involve the parameters obtained from the empirical fit to some of the experimental dielectric functions of MNPs available in literature. The derived working formula enables research community to tune the LSPR of nanocomposites in the whole range of visible wavelengths. The derived formula also concluded that with known lower volume fractions, shape of MNPs affects λR the most, compared to the other parameters. The derived formula was validated by calculating the full extinction spectra. It was shown for the first time that there exists an optimum value of oblate shape to give maximum resonance for a given nanocomposite.
培养纳米复合薄膜的等离子体特性:最佳扁圆形状的重要性
金属纳米颗粒(MNPs)嵌入电介质薄膜在许多光电应用中是至关重要的。本报告探讨了调整这种纳米复合薄膜等离子体特性的各种方法。为此,首先将众所周知的等离子体共振条件推广到包括MNPs的形状和体积分数。随后推导出共振位置(λR)的经验公式,该公式被计算为二次方程的正根。推导出的二次关系式的系数涉及到文献中对MNPs的一些实验介电函数的经验拟合得到的参数。推导出的工作公式使研究人员能够在整个可见波长范围内调整纳米复合材料的LSPR。推导出的公式还表明,在已知体积分数较低的情况下,MNPs的形状对λR的影响最大。通过计算全消光谱,验证了推导公式的正确性。首次证明了在给定的纳米复合材料中,存在一个能产生最大共振的最佳扁圆形状值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信