Extended Short-Wave Infrared Absorption in Group-IV Nanowire Arrays

A. Attiaoui, É. Bouthillier, G. Daligou, A. Kumar, S. Assali, O. Moutanabbir
{"title":"Extended Short-Wave Infrared Absorption in Group-IV Nanowire Arrays","authors":"A. Attiaoui, É. Bouthillier, G. Daligou, A. Kumar, S. Assali, O. Moutanabbir","doi":"10.1103/PHYSREVAPPLIED.15.014034","DOIUrl":null,"url":null,"abstract":"Engineering light absorption in the extended short-wave infrared (e-SWIR) range using scalable materials is a long-sought-after capability that is crucial to implement cost-effective and high-performance sensing and imaging technologies. Herein, we demonstrate enhanced, tunable e-SWIR absorption using silicon-integrated platforms consisting of ordered arrays of metastable GeSn nanowires with Sn content reaching 9 at.% and variable diameters. Detailed simulations were combined with experimental analyses to systematically investigate light-GeSn nanowire interactions to tailor and optimize the nanowire array geometrical parameters and the corresponding optical response. The diameter-dependent leaky mode resonance peaks are theoretically predicted and experimentally confirmed with a tunable wavelength from 1.5 to 2.2 {\\mu}m. A three-fold enhancement in the absorption with respect to GeSn layers at 2.1 {\\mu}m was achieved using nanowires with a diameter of 325 nm. Finite difference time domain simulations unraveled the underlying mechanisms of the e-SWIR enhanced absorption. Coupling of the HE11 and HE12 resonant modes to nanowires is observed at diameters above 325 nm, while at smaller diameters and longer wavelengths the HE11 mode is guided into the underlying Ge layer. The presence of tapering in NWs further extends the absorption range while minimizing reflection. This ability to engineer and enhance e-SWIR absorption lays the groundwork to implement novel photonic devices exploiting all-group IV platforms.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.014034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Engineering light absorption in the extended short-wave infrared (e-SWIR) range using scalable materials is a long-sought-after capability that is crucial to implement cost-effective and high-performance sensing and imaging technologies. Herein, we demonstrate enhanced, tunable e-SWIR absorption using silicon-integrated platforms consisting of ordered arrays of metastable GeSn nanowires with Sn content reaching 9 at.% and variable diameters. Detailed simulations were combined with experimental analyses to systematically investigate light-GeSn nanowire interactions to tailor and optimize the nanowire array geometrical parameters and the corresponding optical response. The diameter-dependent leaky mode resonance peaks are theoretically predicted and experimentally confirmed with a tunable wavelength from 1.5 to 2.2 {\mu}m. A three-fold enhancement in the absorption with respect to GeSn layers at 2.1 {\mu}m was achieved using nanowires with a diameter of 325 nm. Finite difference time domain simulations unraveled the underlying mechanisms of the e-SWIR enhanced absorption. Coupling of the HE11 and HE12 resonant modes to nanowires is observed at diameters above 325 nm, while at smaller diameters and longer wavelengths the HE11 mode is guided into the underlying Ge layer. The presence of tapering in NWs further extends the absorption range while minimizing reflection. This ability to engineer and enhance e-SWIR absorption lays the groundwork to implement novel photonic devices exploiting all-group IV platforms.
四族纳米线阵列中短波红外吸收的扩展
在扩展短波红外(e-SWIR)范围内使用可扩展材料的工程光吸收是一种长期追求的能力,对于实现成本效益和高性能传感和成像技术至关重要。在这里,我们展示了增强的、可调谐的e-SWIR吸收,使用由有序阵列的亚稳GeSn纳米线组成的硅集成平台,Sn含量达到9 at。%和可变直径。详细的模拟与实验分析相结合,系统地研究了光- gesn纳米线的相互作用,以定制和优化纳米线阵列的几何参数和相应的光学响应。理论上预测了与直径相关的漏模共振峰,并在1.5 ~ 2.2 {\mu}m的波长范围内进行了实验验证。使用直径为325 nm的纳米线,相对于2.1 {\mu}m的GeSn层的吸收增强了三倍。时域有限差分模拟揭示了e-SWIR增强吸收的潜在机制。在直径大于325 nm处,HE11和HE12谐振模式与纳米线耦合,而在直径较小、波长较长的纳米线处,HE11模式被引导到其下的Ge层。NWs中逐渐变细的存在进一步扩大了吸收范围,同时使反射最小化。这种设计和增强e-SWIR吸收的能力为实现利用全IV群平台的新型光子器件奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信