Mathematical analysis of network traffic

S. Mian, M. Ghassempoory, M. Bentall
{"title":"Mathematical analysis of network traffic","authors":"S. Mian, M. Ghassempoory, M. Bentall","doi":"10.1109/SCORED.2002.1033104","DOIUrl":null,"url":null,"abstract":"The level of complexity in computer networks is rising and the mathematics needed to model the network traffic behaviour is not an exact science. This paper aims to bridge the gap between mathematics and engineering by illustrating some of the problems that exist with conventional traffic modeling, and show how to obtain informative network statistics via mathematical tools such as the Hurst (1951) parameter and the autocorrelation function. We show how aggregated traffic behaves over various time scales and focus on certain protocols to observe their impact on the network at various ingress/egress points on our university network. Furthermore, we present the many analytical tools that are useful in characterising these systems.","PeriodicalId":6865,"journal":{"name":"2016 IEEE Student Conference on Research and Development (SCOReD)","volume":"26 1","pages":"249-252"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCORED.2002.1033104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The level of complexity in computer networks is rising and the mathematics needed to model the network traffic behaviour is not an exact science. This paper aims to bridge the gap between mathematics and engineering by illustrating some of the problems that exist with conventional traffic modeling, and show how to obtain informative network statistics via mathematical tools such as the Hurst (1951) parameter and the autocorrelation function. We show how aggregated traffic behaves over various time scales and focus on certain protocols to observe their impact on the network at various ingress/egress points on our university network. Furthermore, we present the many analytical tools that are useful in characterising these systems.
网络流量的数学分析
计算机网络的复杂程度正在上升,而为网络流量行为建模所需的数学并不是一门精确的科学。本文旨在通过说明传统交通建模存在的一些问题,弥合数学与工程之间的差距,并展示如何通过Hurst(1951)参数和自相关函数等数学工具获得信息网络统计。我们展示了聚合流量在不同时间尺度上的行为,并重点关注某些协议,以观察它们在我们大学网络的不同入口/出口点对网络的影响。此外,我们提出了许多分析工具,是有用的表征这些系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信