Design Challenges in Effective Algorithm Development of Sign Language Recognition System

S. A, Shahul Hameed T A, Sheeba O
{"title":"Design Challenges in Effective Algorithm Development of Sign Language Recognition System","authors":"S. A, Shahul Hameed T A, Sheeba O","doi":"10.35940/ijeat.c4030.0212323","DOIUrl":null,"url":null,"abstract":"Sign language is the most putative language among hearing impaired people. They use non-verbal form of communication that involves hand gestures, head or body movement or facial expressions. Of these hand gestures is more widely used. Automatic Sign Language Recognition (ASLR) System can be used to convert these non-verbal signs into text or sound so that normal people can identify them without learning the sign language. ASLR employs Image Processing and Artificial Intelligence (AI) algorithms for effective conversion from sign to sound or text. This review unveils various image processing and AI steps involved in the conversion process, bringing out important topologies in the Image acquisition, segmentation, feature extraction, classification and detection process and a comparative analysis among various topologies. Attempts have been made to shed light into adoption of alternate design strategies in segmentation and feature extraction that enhance the performance in a complex environment.","PeriodicalId":13981,"journal":{"name":"International Journal of Engineering and Advanced Technology","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijeat.c4030.0212323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sign language is the most putative language among hearing impaired people. They use non-verbal form of communication that involves hand gestures, head or body movement or facial expressions. Of these hand gestures is more widely used. Automatic Sign Language Recognition (ASLR) System can be used to convert these non-verbal signs into text or sound so that normal people can identify them without learning the sign language. ASLR employs Image Processing and Artificial Intelligence (AI) algorithms for effective conversion from sign to sound or text. This review unveils various image processing and AI steps involved in the conversion process, bringing out important topologies in the Image acquisition, segmentation, feature extraction, classification and detection process and a comparative analysis among various topologies. Attempts have been made to shed light into adoption of alternate design strategies in segmentation and feature extraction that enhance the performance in a complex environment.
手语识别系统有效算法开发中的设计挑战
手语是听力受损人群中最常用的语言。他们使用非语言形式的交流,包括手势、头部或身体运动或面部表情。其中手势的使用更为广泛。自动手语识别系统(ASLR)可用于将这些非语言符号转换为文本或声音,以便普通人无需学习手语即可识别它们。ASLR采用图像处理和人工智能(AI)算法,有效地将符号转换为声音或文本。本文介绍了转换过程中涉及的各种图像处理和人工智能步骤,提出了图像采集、分割、特征提取、分类和检测过程中的重要拓扑,并对各种拓扑进行了比较分析。为了在复杂的环境中提高性能,在分割和特征提取中采用了不同的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信