{"title":"Review on contraction analysis and computation of contraction metrics","authors":"P. Giesl, S. Hafstein, C. Kawan","doi":"10.3934/jcd.2022018","DOIUrl":null,"url":null,"abstract":"Contraction analysis considers the distance between two adjacent trajectories. If this distance is contracting, then trajectories have the same long-term behavior. The main advantage of this analysis is that it is independent of the solutions under consideration. Using an appropriate metric, with respect to which the distance is contracting, one can show convergence to a unique equilibrium or, if attraction only occurs in certain directions, to a periodic orbit.Contraction analysis was originally considered for ordinary differential equations, but has been extended to discrete-time systems, control systems, delay equations and many other types of systems. Moreover, similar techniques can be applied for the estimation of the dimension of attractors and for the estimation of different notions of entropy (including topological entropy).This review attempts to link the references in both the mathematical and the engineering literature and, furthermore, point out the recent developments and algorithms in the computation of contraction metrics.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2022018","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Contraction analysis considers the distance between two adjacent trajectories. If this distance is contracting, then trajectories have the same long-term behavior. The main advantage of this analysis is that it is independent of the solutions under consideration. Using an appropriate metric, with respect to which the distance is contracting, one can show convergence to a unique equilibrium or, if attraction only occurs in certain directions, to a periodic orbit.Contraction analysis was originally considered for ordinary differential equations, but has been extended to discrete-time systems, control systems, delay equations and many other types of systems. Moreover, similar techniques can be applied for the estimation of the dimension of attractors and for the estimation of different notions of entropy (including topological entropy).This review attempts to link the references in both the mathematical and the engineering literature and, furthermore, point out the recent developments and algorithms in the computation of contraction metrics.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.