Review on contraction analysis and computation of contraction metrics

IF 1 Q3 Engineering
P. Giesl, S. Hafstein, C. Kawan
{"title":"Review on contraction analysis and computation of contraction metrics","authors":"P. Giesl, S. Hafstein, C. Kawan","doi":"10.3934/jcd.2022018","DOIUrl":null,"url":null,"abstract":"Contraction analysis considers the distance between two adjacent trajectories. If this distance is contracting, then trajectories have the same long-term behavior. The main advantage of this analysis is that it is independent of the solutions under consideration. Using an appropriate metric, with respect to which the distance is contracting, one can show convergence to a unique equilibrium or, if attraction only occurs in certain directions, to a periodic orbit.Contraction analysis was originally considered for ordinary differential equations, but has been extended to discrete-time systems, control systems, delay equations and many other types of systems. Moreover, similar techniques can be applied for the estimation of the dimension of attractors and for the estimation of different notions of entropy (including topological entropy).This review attempts to link the references in both the mathematical and the engineering literature and, furthermore, point out the recent developments and algorithms in the computation of contraction metrics.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2022018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

Abstract

Contraction analysis considers the distance between two adjacent trajectories. If this distance is contracting, then trajectories have the same long-term behavior. The main advantage of this analysis is that it is independent of the solutions under consideration. Using an appropriate metric, with respect to which the distance is contracting, one can show convergence to a unique equilibrium or, if attraction only occurs in certain directions, to a periodic orbit.Contraction analysis was originally considered for ordinary differential equations, but has been extended to discrete-time systems, control systems, delay equations and many other types of systems. Moreover, similar techniques can be applied for the estimation of the dimension of attractors and for the estimation of different notions of entropy (including topological entropy).This review attempts to link the references in both the mathematical and the engineering literature and, furthermore, point out the recent developments and algorithms in the computation of contraction metrics.
收缩分析与收缩度量计算综述
收缩分析考虑两个相邻轨迹之间的距离。如果这个距离在缩小,那么轨迹就有相同的长期行为。这种分析的主要优点是它独立于所考虑的解决方案。使用一个适当的度量,距离相对于它收缩,人们可以显示收敛到一个唯一的平衡,或者,如果吸引力只发生在某个方向上,收敛到一个周期轨道。收缩分析最初被认为是常微分方程,但已经扩展到离散时间系统,控制系统,延迟方程和许多其他类型的系统。此外,类似的技术可以应用于吸引子维度的估计和熵(包括拓扑熵)的不同概念的估计。这篇综述试图将数学和工程文献中的参考文献联系起来,此外,指出收缩度量计算的最新发展和算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Dynamics
Journal of Computational Dynamics Engineering-Computational Mechanics
CiteScore
2.30
自引率
10.00%
发文量
31
期刊介绍: JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信