Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid

IF 0.5 Q3 MATHEMATICS
Aneta Wr'oblewska-Kami'nska
{"title":"Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid","authors":"Aneta Wr'oblewska-Kami'nska","doi":"10.5817/am2023-2-231","DOIUrl":null,"url":null,"abstract":"We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\\varepsilon \\to 0$, the Froude number proportional to $\\sqrt{\\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\\varepsilon \\to 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck-Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2023-2-231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \to 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon \to 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck-Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.
可压缩导热粘性流体低马赫数极限区域的稳定性
研究了当马赫数与小参数$\varepsilon \to 0$成正比,弗鲁德数与$\sqrt{\varepsilon}$成正比,流体占据较大区域,粗糙表面空间障碍物变化为$\varepsilon \to 0$时,Navier-Stokes-Fourier系统解的渐近极限。极限速度场是螺线形的,满足不可压缩的Oberbeck-Boussinesq近似。我们的研究基于弱解方法,为了达到对流项的极限,我们应用了控制声波运动的相关波传播子(诺伊曼-拉普拉斯算子)的频谱分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信