Beatriz Sales da Cunha, M. das Chagas Moura, Caio Souto Maior, Ana Cláudia Negreiros, Isis Didier Lins
{"title":"A comparison between computer vision- and deep learning-based models for automated concrete crack detection","authors":"Beatriz Sales da Cunha, M. das Chagas Moura, Caio Souto Maior, Ana Cláudia Negreiros, Isis Didier Lins","doi":"10.1177/1748006X221140966","DOIUrl":null,"url":null,"abstract":"Systems subjected to continuous operation are exposed to different failure mechanisms such as fatigue, corrosion, and temperature-related defects, which makes inspection and monitoring their health paramount to prevent a system suffering from severe damage. However, visual inspection strongly depends on a human being’s experience, and so its accuracy is influenced by the physical and cognitive state of the inspector. Particularly, civil infrastructures need to be periodically inspected. This is costly, time-consuming, labor-intensive, hazardous, and biased. Advances in Computer Vision (CV) techniques provide the means to develop automated, accurate, non-contact, and non-destructive inspection methods. Hence, this paper compares two different approaches to detecting cracks in images automatically. The first is based on a traditional CV technique, using texture analysis and machine learning methods (TA + ML-based), and the second is based on deep learning (DL), using Convolutional Neural Networks (CNN) models. We analyze both approaches, comparing several ML models and CNN architectures in a real crack database considering six distinct dataset sizes. The results showed that for small-sized datasets, for example, up to 100 images, the DL-based approach achieved a balanced accuracy (BA) of ∼74%, while the TA + ML-based approach obtained a BA > 95%. For larger datasets, the performances of both approaches present comparable results. For images classified as having crack(s), we also evaluate three metrics to measure the severity of a crack based on a segmented version of the original image, as an additional metric to trigger the appropriate maintenance response.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":"7 1","pages":"994 - 1010"},"PeriodicalIF":1.7000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006X221140966","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Systems subjected to continuous operation are exposed to different failure mechanisms such as fatigue, corrosion, and temperature-related defects, which makes inspection and monitoring their health paramount to prevent a system suffering from severe damage. However, visual inspection strongly depends on a human being’s experience, and so its accuracy is influenced by the physical and cognitive state of the inspector. Particularly, civil infrastructures need to be periodically inspected. This is costly, time-consuming, labor-intensive, hazardous, and biased. Advances in Computer Vision (CV) techniques provide the means to develop automated, accurate, non-contact, and non-destructive inspection methods. Hence, this paper compares two different approaches to detecting cracks in images automatically. The first is based on a traditional CV technique, using texture analysis and machine learning methods (TA + ML-based), and the second is based on deep learning (DL), using Convolutional Neural Networks (CNN) models. We analyze both approaches, comparing several ML models and CNN architectures in a real crack database considering six distinct dataset sizes. The results showed that for small-sized datasets, for example, up to 100 images, the DL-based approach achieved a balanced accuracy (BA) of ∼74%, while the TA + ML-based approach obtained a BA > 95%. For larger datasets, the performances of both approaches present comparable results. For images classified as having crack(s), we also evaluate three metrics to measure the severity of a crack based on a segmented version of the original image, as an additional metric to trigger the appropriate maintenance response.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome