{"title":"Research on Miniaturized Ultra-High Voltage and High Power Supply","authors":"M. Fu, Zicai Wang, Donglai Zhang, Hua Zhang","doi":"10.1109/ICHVE49031.2020.9279662","DOIUrl":null,"url":null,"abstract":"A miniaturized ultra-high voltage and high power supply (uHV power supply) is proposed in this paper by choosing the full-wave Cockcroft-Walton voltage multiplier. The voltage multiplier on the secondary side of main power transformer and the isolated resonant current-fed inverter on the primary side are described in detail, including the condition of high voltage rectifier diode working in soft recovery, the design of isolated high power resonant current-fed inverter and its corresponding control mode under the former condition. Additionally, the simulation results of the proposed uHV power supply show that the voltage multiplier diode always works in the soft recovery switching state, and the output voltage ripple peak-to-peak value is smaller than 20V, that is, there is significant improvement in the operating frequency and decrease in the output voltage ripple, in agreement with the expected miniaturization purpose of uHV power supply.","PeriodicalId":6763,"journal":{"name":"2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE)","volume":"43 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHVE49031.2020.9279662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A miniaturized ultra-high voltage and high power supply (uHV power supply) is proposed in this paper by choosing the full-wave Cockcroft-Walton voltage multiplier. The voltage multiplier on the secondary side of main power transformer and the isolated resonant current-fed inverter on the primary side are described in detail, including the condition of high voltage rectifier diode working in soft recovery, the design of isolated high power resonant current-fed inverter and its corresponding control mode under the former condition. Additionally, the simulation results of the proposed uHV power supply show that the voltage multiplier diode always works in the soft recovery switching state, and the output voltage ripple peak-to-peak value is smaller than 20V, that is, there is significant improvement in the operating frequency and decrease in the output voltage ripple, in agreement with the expected miniaturization purpose of uHV power supply.