Andreas Frigg, A. Boes, G. Ren, D. Choi, S. Gees, A. Mitchell
{"title":"Low Stress, Anomalous Dispersive Silicon Nitride Waveguides Fabricated by Reactive Sputtering","authors":"Andreas Frigg, A. Boes, G. Ren, D. Choi, S. Gees, A. Mitchell","doi":"10.1109/CLEOE-EQEC.2019.8873255","DOIUrl":null,"url":null,"abstract":"Silicon nitride (SiN) waveguides are a promising platform for nonlinear photonic devices, as it offers a large bandgap, low two-photon absorption, CMOS-compatible fabrication methods and a significant nonlinearity [1,2]. Prominent applications are optical frequency comb generation [2] and supercontinuum generation [3]. These applications require waveguides with an anomalous group velocity dispersion in order to be efficient, which can be achieved by tailoring the waveguide dimensions [2,3]. Optical-quality SiN films are commonly deposited by LPCVD, however the high processing temperatures (> 800 ° C) can cause a high layer stress and crack formation. In this work we investigate reactive magnetron sputtering (PVD) as a method for low temperature (< 150 °C) deposition of SiN thin-films for optical waveguides.","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"63 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8873255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon nitride (SiN) waveguides are a promising platform for nonlinear photonic devices, as it offers a large bandgap, low two-photon absorption, CMOS-compatible fabrication methods and a significant nonlinearity [1,2]. Prominent applications are optical frequency comb generation [2] and supercontinuum generation [3]. These applications require waveguides with an anomalous group velocity dispersion in order to be efficient, which can be achieved by tailoring the waveguide dimensions [2,3]. Optical-quality SiN films are commonly deposited by LPCVD, however the high processing temperatures (> 800 ° C) can cause a high layer stress and crack formation. In this work we investigate reactive magnetron sputtering (PVD) as a method for low temperature (< 150 °C) deposition of SiN thin-films for optical waveguides.