Saeed Iqbal, Shahid Nawaz Khan, M. Sajid, Jawad Khan, Y. Ayaz, A. Waqas
{"title":"Impact and performance efficiency analysis of grid-tied solar photovoltaic system based on installation site environmental factors","authors":"Saeed Iqbal, Shahid Nawaz Khan, M. Sajid, Jawad Khan, Y. Ayaz, A. Waqas","doi":"10.1177/0958305X221106618","DOIUrl":null,"url":null,"abstract":"The performance of solar photovoltaic systems tends to decline if the operating conditions change from the nominal operating cell temperature due to environmental factors. The major factors include temperature and humidity variations, which cause thermal losses and open-circuit voltage drops in photovoltaic panels. This study investigates the correlations between solar photovoltaic performance and environmental factors by quantifying the real-time variables including temperature, humidity, dewpoint temperature, and heat index. Furthermore, the study investigates the difference between real-time measured and theoretically calculated temperature values with the help of weather station data to investigate the impact of temperature difference on the overall percentage power loss of the systems. The panels were installed at three distinct sites (rooftop, parking shed, and ground-mounted) connected to the same grid-tied system. Results reveal that the photovoltaic panel temperature has an inverse relation with the dew temperature and the humidity of the surrounding environment. The heat index value was found slightly less at the peak solar hours during the 24 h cycle of the measurement. The difference and relationship between temperature and humidity are measured and losses are highlighted based on the instantaneous occurrence of variables. Based on a difference between measured and calculated temperature values, results reveal that PV systems faced 27.95%, 5.41%, and 0.82% power losses for ground, roof, and parking installed PV systems, respectively.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"119 1","pages":"2343 - 2363"},"PeriodicalIF":4.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221106618","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 8
Abstract
The performance of solar photovoltaic systems tends to decline if the operating conditions change from the nominal operating cell temperature due to environmental factors. The major factors include temperature and humidity variations, which cause thermal losses and open-circuit voltage drops in photovoltaic panels. This study investigates the correlations between solar photovoltaic performance and environmental factors by quantifying the real-time variables including temperature, humidity, dewpoint temperature, and heat index. Furthermore, the study investigates the difference between real-time measured and theoretically calculated temperature values with the help of weather station data to investigate the impact of temperature difference on the overall percentage power loss of the systems. The panels were installed at three distinct sites (rooftop, parking shed, and ground-mounted) connected to the same grid-tied system. Results reveal that the photovoltaic panel temperature has an inverse relation with the dew temperature and the humidity of the surrounding environment. The heat index value was found slightly less at the peak solar hours during the 24 h cycle of the measurement. The difference and relationship between temperature and humidity are measured and losses are highlighted based on the instantaneous occurrence of variables. Based on a difference between measured and calculated temperature values, results reveal that PV systems faced 27.95%, 5.41%, and 0.82% power losses for ground, roof, and parking installed PV systems, respectively.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.