Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in Escherichia coli

Kyle S. Skalenko, Lingting Li, Yuanchao Zhang, I. Vvedenskaya, Jared T. Winkelman, Alexander L. Cope, Deanne Taylor, Premal Shah, R. Ebright, J. Kinney, Yu Zhang, Bryce E. Nickels
{"title":"Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in Escherichia coli","authors":"Kyle S. Skalenko, Lingting Li, Yuanchao Zhang, I. Vvedenskaya, Jared T. Winkelman, Alexander L. Cope, Deanne Taylor, Premal Shah, R. Ebright, J. Kinney, Yu Zhang, Bryce E. Nickels","doi":"10.1101/2021.04.06.438613","DOIUrl":null,"url":null,"abstract":"Significance Primer-dependent transcription initiation—the use of RNA primers as initiating entities in transcription initiation—yields RNA products having a 5′-hydroxyl. Here, we show that primer-dependent initiation in vivo in Escherichia coli involves predominantly dinucleotide primers, involves any of the 16 possible dinucleotide primers, and depends on promoter sequences in, upstream, and downstream of the primer binding site. Crystal structures explain the structural basis of sequence dependence at the promoter position immediately upstream of the primer binding site, namely, interchain base stacking between the promoter template-strand nucleotide and primer 5′ nucleotide. Taken together, our findings provide a mechanistic and structural description of primer-dependent initiation in E. coli. Chemical modifications of RNA 5′-ends enable “epitranscriptomic” regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5′-end. In Escherichia coli cells, RNAs with a 5′-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, “primer-dependent initiation.” Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5′-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli. The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS−2NTSS−1NTSSWTSS+1, where TSS is the transcription start site, NTSS−1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS−2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS−2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded E. coli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.","PeriodicalId":20595,"journal":{"name":"Proceedings of the National Academy of Sciences","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.04.06.438613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Significance Primer-dependent transcription initiation—the use of RNA primers as initiating entities in transcription initiation—yields RNA products having a 5′-hydroxyl. Here, we show that primer-dependent initiation in vivo in Escherichia coli involves predominantly dinucleotide primers, involves any of the 16 possible dinucleotide primers, and depends on promoter sequences in, upstream, and downstream of the primer binding site. Crystal structures explain the structural basis of sequence dependence at the promoter position immediately upstream of the primer binding site, namely, interchain base stacking between the promoter template-strand nucleotide and primer 5′ nucleotide. Taken together, our findings provide a mechanistic and structural description of primer-dependent initiation in E. coli. Chemical modifications of RNA 5′-ends enable “epitranscriptomic” regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5′-end. In Escherichia coli cells, RNAs with a 5′-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, “primer-dependent initiation.” Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5′-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli. The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS−2NTSS−1NTSSWTSS+1, where TSS is the transcription start site, NTSS−1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS−2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS−2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded E. coli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation.
大肠杆菌启动子序列决定因素及引物依赖性转录起始的结构基础
依赖引物的转录起始-在转录起始中使用RNA引物作为起始实体-产生具有5 ' -羟基的RNA产物。本研究表明,大肠杆菌体内的引物依赖起始主要涉及二核苷酸引物,涉及16种可能的二核苷酸引物中的任何一种,并且依赖于引物结合位点的上游和下游的启动子序列。晶体结构解释了紧靠引物结合位点上游启动子位置序列依赖的结构基础,即启动子模板链核苷酸与引物5 '核苷酸之间的链间碱基堆叠。综上所述,我们的发现提供了大肠杆菌中依赖引物起始的机制和结构描述。RNA 5 '末端的化学修饰可实现“表转录组”调控,影响RNA命运的多个方面。在转录起始中,大量底物与三磷酸核苷竞争作为起始实体,提供了一种从头开始改变RNA 5 '端的机制。在大肠杆菌细胞中,使用二核苷酸rna作为转录起始的引物,产生具有5 '端羟基的rna,即“引物依赖性起始”。在这里,我们使用大规模系统转录端读出(MASTER)来检测和量化大肠杆菌中约410(约1,000,000)个启动子序列的引物依赖起始产生的RNA 5 '端。结果表明,大肠杆菌中的引物依赖起始涉及16种可能的二核苷酸引物中的任何一种,并且取决于引物结合位点的上游和下游的启动子序列。结果得出了一个一致的引物依赖起始序列,YTSS - 2NTSS - 1NTSSWTSS+1,其中TSS是转录起始位点,NTSS - 1NTSS是引物结合位点,Y是嘧啶,W是a或t。生化和结构测定研究表明,该碱基对(非模板-链碱基:模板-链碱基)位于引物结合位点的上游(Y:RTSS - 2;其中R为嘌呤)通过DNA模板链(RTSS−2)上的碱基与RNA引物的链间碱基叠加发挥作用。对大量天然的、染色体编码的大肠杆菌启动子的分析结果支持MASTER的结论。我们的研究结果提供了TSS区域序列如何不仅硬编码TSS位置,而且通过引物依赖性转录起始进行表转录组调控的机制和结构描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信