Ding modules and dimensions over formal triangular matrix rings

L. Mao
{"title":"Ding modules and dimensions over formal triangular matrix rings","authors":"L. Mao","doi":"10.4171/rsmup/100","DOIUrl":null,"url":null,"abstract":"Let $T=\\biggl(\\begin{matrix} A&0\\\\ U&B \\end{matrix}\\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We prove that: (1) If $U_A$ and $_B U$ have finite flat dimensions, then a left $T$-module $\\biggl(\\begin{matrix} M_1\\\\ M_2\\end{matrix}\\biggr)_{\\varphi^M}$ is Ding projective if and only if $M_1$ and $M_2/{\\rm im}(\\varphi^M)$ are Ding projective and the morphism $\\varphi^M$ is a monomorphism. (2) If $T$ is a right coherent ring, $_{B}U$ has finite flat dimension, $U_{A}$ is finitely presented and has finite projective or $FP$-injective dimension, then a right $T$-module $(W_{1}, W_{2})_{\\varphi_{W}}$ is Ding injective if and only if $W_{1}$ and $\\ker(\\widetilde{\\varphi_{W}})$ are Ding injective and the morphism $\\widetilde{\\varphi_{W}}$ is an epimorphism. As a consequence, we describe Ding projective and Ding injective dimensions of a $T$-module.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let $T=\biggl(\begin{matrix} A&0\\ U&B \end{matrix}\biggr)$ be a formal triangular matrix ring, where $A$ and $B$ are rings and $U$ is a $(B, A)$-bimodule. We prove that: (1) If $U_A$ and $_B U$ have finite flat dimensions, then a left $T$-module $\biggl(\begin{matrix} M_1\\ M_2\end{matrix}\biggr)_{\varphi^M}$ is Ding projective if and only if $M_1$ and $M_2/{\rm im}(\varphi^M)$ are Ding projective and the morphism $\varphi^M$ is a monomorphism. (2) If $T$ is a right coherent ring, $_{B}U$ has finite flat dimension, $U_{A}$ is finitely presented and has finite projective or $FP$-injective dimension, then a right $T$-module $(W_{1}, W_{2})_{\varphi_{W}}$ is Ding injective if and only if $W_{1}$ and $\ker(\widetilde{\varphi_{W}})$ are Ding injective and the morphism $\widetilde{\varphi_{W}}$ is an epimorphism. As a consequence, we describe Ding projective and Ding injective dimensions of a $T$-module.
形式三角矩阵环上的丁模和维数
设$T=\biggl(\begin{matrix} a &0\\ U&B \end{matrix}\biggr)$是一个形式三角矩阵环,其中$ a $和$B$是环,$U$是一个$(B, a)$-双模。证明了(1)如果$U_A$和$_B U$具有有限的平坦维数,则左$T$-模$\biggl(\begin{matrix} M_1\\ M_2\end{matrix}\biggr)_{\varphi^M}$是Ding投影当且仅当$M_1$和$M_2/{\rm im}(\varphi^M)$是Ding投影且态射$\varphi^M$是单态。(2)如果$T$是一个右相干环,$_{B}U$具有有限的平面维数,$U_{a}$是有限的投影维数或$FP$-内射维数,则一个右$T$-模$(W_{1}, W_{2}) $ {\varphi_{W}}$是Ding内射当且仅当$W_{1}$和$\ker(\ widdetilde {\varphi_{W}})$是Ding内射且态射$\ widdetilde {\varphi_{W}}$是上射。因此,我们描述了$T$-模的Ding投影维和Ding内射维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信