P1A-8 Blurred Ultrasonic Images as ISI-Affected Signals: Joint Tissue Response Estimation and Channel Tracking in the Proposed Paradigm

L. De Marchi, A. Palladini, N. Testoni, N. Speciale
{"title":"P1A-8 Blurred Ultrasonic Images as ISI-Affected Signals: Joint Tissue Response Estimation and Channel Tracking in the Proposed Paradigm","authors":"L. De Marchi, A. Palladini, N. Testoni, N. Speciale","doi":"10.1109/ULTSYM.2007.319","DOIUrl":null,"url":null,"abstract":"Biomedical ultrasound (US) image quality is limited due to the blurring of tissue reflectivity introduced by the transducer Point Spread Function (PSF). We present a method based on a Maximum Likelihood (ML) estimation of tissue response. We adopt efficient equalization techniques usually applied in digital communications: the ultrasonic RF signal is considered as a sequence of discrete values (symbols) affected by channel intersymbol interference (ISI), and processed with a reduced-complexity Viterbi algorithm. Spatial variations of the channel are then tracked by coupling the Viterbi algorithm with a least mean square (LMS) real-time updating procedure. Finally, an adaptive symbol-quantization is defined to overcome the qualitative limitation due to a finite-length alphabet. The results show that the fast LMS adaptation of the channel allows for a real-time spatial analysis and compensation of tissue attenuation effects and inhomogeneities, thus enhancing the diagnostic capability of US images.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"110 1","pages":"1270-1273"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Biomedical ultrasound (US) image quality is limited due to the blurring of tissue reflectivity introduced by the transducer Point Spread Function (PSF). We present a method based on a Maximum Likelihood (ML) estimation of tissue response. We adopt efficient equalization techniques usually applied in digital communications: the ultrasonic RF signal is considered as a sequence of discrete values (symbols) affected by channel intersymbol interference (ISI), and processed with a reduced-complexity Viterbi algorithm. Spatial variations of the channel are then tracked by coupling the Viterbi algorithm with a least mean square (LMS) real-time updating procedure. Finally, an adaptive symbol-quantization is defined to overcome the qualitative limitation due to a finite-length alphabet. The results show that the fast LMS adaptation of the channel allows for a real-time spatial analysis and compensation of tissue attenuation effects and inhomogeneities, thus enhancing the diagnostic capability of US images.
P1A-8模糊超声图像作为isi影响信号:关节组织响应估计和通道跟踪
由于换能器点扩散函数(PSF)引入的组织反射率模糊,生物医学超声(US)图像质量受到限制。我们提出了一种基于最大似然(ML)估计组织反应的方法。我们采用了数字通信中常用的有效均衡技术:将超声波射频信号视为受信道码间干扰(ISI)影响的离散值(符号)序列,并采用降低复杂度的Viterbi算法进行处理。然后通过将Viterbi算法与最小均方(LMS)实时更新程序相结合来跟踪信道的空间变化。最后,定义了一种自适应符号量化方法,克服了有限长度字母所带来的定性限制。结果表明,通道的快速LMS适应允许实时空间分析和补偿组织衰减效应和不均匀性,从而增强了超声图像的诊断能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信