Cross-Linked Polymeric Gels and Nanocomposites: New Materials and Phenomena Enabling Technological Applications

Macromol Pub Date : 2022-09-02 DOI:10.3390/macromol2030028
C. Barbero, M. V. Martínez, D. Acevedo, M. Molina, C. Rivarola
{"title":"Cross-Linked Polymeric Gels and Nanocomposites: New Materials and Phenomena Enabling Technological Applications","authors":"C. Barbero, M. V. Martínez, D. Acevedo, M. Molina, C. Rivarola","doi":"10.3390/macromol2030028","DOIUrl":null,"url":null,"abstract":"Cross-linked gels are synthesized by homo- and copolymerization of functionalized acrylamides. The gels swell in aqueous solution, and some of them (e.g., poly(N-isopropylacrylamide (PNIPAM)) also in organic solvents of low polarity (e.g., dichloromethane), making the gels amphiphilic materials. Nanocomposites can be made by dispersing nanoparticles (metallic, graphene, nanotubes, and conducting polymers) inside the gels. Additionally, true semi-interpenetrated networks of polyaniline (PANI) inside PNIPAM gels can be prepared by swelling the gel in true solutions of PANI in NMP. PNIPAM-based nanocomposites show a lower critical solution temperature (LCST) transition of the gel matrix, which can be reached by thermal heating or absorption of electromagnetic radiation (light, microwaves, radiofrequency) in the conductive nanomaterials. The characteristic properties (swelling degree and rate, LCST, solute partition, mass transport, hydrophilicity, biocompatibility) can be tuned by changing the functional groups in the copolymers and/or the other components in the nanocomposite. Mass transport and mechanical properties can be adjusted by forming materials with macro- (nanoporous and macroporous), micro- (microgels, thin films, Pickering emulsions), or nano- (nanogels, stabilized nanoparticles) sized features. The material properties are used to produce technological applications: sensors, actuators, controlled release, biological cell scaffolds and surfaces, antimicrobial, carriers of bioactive substances, and matrixes to immobilize enzymes and yeast cells.","PeriodicalId":18139,"journal":{"name":"Macromol","volume":"183 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/macromol2030028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Cross-linked gels are synthesized by homo- and copolymerization of functionalized acrylamides. The gels swell in aqueous solution, and some of them (e.g., poly(N-isopropylacrylamide (PNIPAM)) also in organic solvents of low polarity (e.g., dichloromethane), making the gels amphiphilic materials. Nanocomposites can be made by dispersing nanoparticles (metallic, graphene, nanotubes, and conducting polymers) inside the gels. Additionally, true semi-interpenetrated networks of polyaniline (PANI) inside PNIPAM gels can be prepared by swelling the gel in true solutions of PANI in NMP. PNIPAM-based nanocomposites show a lower critical solution temperature (LCST) transition of the gel matrix, which can be reached by thermal heating or absorption of electromagnetic radiation (light, microwaves, radiofrequency) in the conductive nanomaterials. The characteristic properties (swelling degree and rate, LCST, solute partition, mass transport, hydrophilicity, biocompatibility) can be tuned by changing the functional groups in the copolymers and/or the other components in the nanocomposite. Mass transport and mechanical properties can be adjusted by forming materials with macro- (nanoporous and macroporous), micro- (microgels, thin films, Pickering emulsions), or nano- (nanogels, stabilized nanoparticles) sized features. The material properties are used to produce technological applications: sensors, actuators, controlled release, biological cell scaffolds and surfaces, antimicrobial, carriers of bioactive substances, and matrixes to immobilize enzymes and yeast cells.
交联聚合物凝胶和纳米复合材料:新材料和现象使技术应用
交联凝胶是由功能化丙烯酰胺的同源和共聚合成的。凝胶在水溶液中膨胀,其中一些(如聚n -异丙基丙烯酰胺(PNIPAM))也在低极性有机溶剂(如二氯甲烷)中膨胀,使凝胶成为两亲性材料。纳米复合材料可以通过在凝胶中分散纳米颗粒(金属、石墨烯、纳米管和导电聚合物)来制造。此外,通过将凝胶溶胀在NMP中真正的聚苯胺溶液中,可以在PNIPAM凝胶中制备聚苯胺(PANI)的真正半互穿网络。pnipam基纳米复合材料表现出较低的凝胶基质临界溶液温度(LCST)转变,这可以通过加热或吸收导电纳米材料中的电磁辐射(光、微波、射频)来实现。通过改变共聚物和/或纳米复合材料中其他组分的官能团,可以调节共聚物的特性(膨胀度和速率、LCST、溶质分配、质量传递、亲水性、生物相容性)。通过形成具有宏观(纳米多孔和大孔)、微观(微凝胶、薄膜、皮克林乳液)或纳米(纳米凝胶、稳定纳米颗粒)尺寸特征的材料,可以调节质量传递和机械性能。材料特性用于生产技术应用:传感器,执行器,控制释放,生物细胞支架和表面,抗菌剂,生物活性物质的载体,以及固定酶和酵母细胞的基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信