Optimal influence cover for an element free Galerkin MFree method based on artificial neural network

IF 1 4区 工程技术 Q4 MECHANICS
Imane Hajjout, Manal Haddouch, El Mostapha Boudi
{"title":"Optimal influence cover for an element free Galerkin MFree method based on artificial neural network","authors":"Imane Hajjout, Manal Haddouch, El Mostapha Boudi","doi":"10.5802/crmeca.5","DOIUrl":null,"url":null,"abstract":"The present investigation presents an efficient meshless method based on the weak form of an element-free-Galerkin method. The formulation of the numerical solution was conducted using an artificial neural network (ANN) approach to compute the optimal number of nodes in the influence domain for each point of interest. The numerical results using the ANN model were tested and compared with different approaches in the literature. Results show a reduction in the computational cost and an enhancement in an error criterion of up to 11%.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"16 1","pages":"63-76"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/crmeca.5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

The present investigation presents an efficient meshless method based on the weak form of an element-free-Galerkin method. The formulation of the numerical solution was conducted using an artificial neural network (ANN) approach to compute the optimal number of nodes in the influence domain for each point of interest. The numerical results using the ANN model were tested and compared with different approaches in the literature. Results show a reduction in the computational cost and an enhancement in an error criterion of up to 11%.
基于人工神经网络的无单元Galerkin MFree方法的最优影响覆盖
本文基于无单元伽辽金法的弱形式,提出了一种有效的无网格方法。采用人工神经网络(ANN)方法计算每个感兴趣点的影响域中的最优节点数,从而制定了数值解。利用人工神经网络模型对数值结果进行了检验,并与文献中不同方法进行了比较。结果表明,该方法降低了计算成本,误差标准提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信