{"title":"Strong convergence theorems for strongly monotone mappings in Banach spaces","authors":"M. Aibinu, O. Mewomo","doi":"10.5269/bspm.37655","DOIUrl":null,"url":null,"abstract":"Let $E$ be a uniformly smooth and uniformly convex real Banach space and $E^*$ be its dual space. Suppose $A : E\\rightarrow E^*$ is bounded, strongly monotone and satisfies the range condition such that $A^{-1}(0)\\neq \\emptyset$. Inspired by Alber [2], we introduce Lyapunov functions and use the new geometric properties of Banach spaces to show the strong convergence of an iterative algorithm to the solution of $Ax=0$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5269/bspm.37655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Let $E$ be a uniformly smooth and uniformly convex real Banach space and $E^*$ be its dual space. Suppose $A : E\rightarrow E^*$ is bounded, strongly monotone and satisfies the range condition such that $A^{-1}(0)\neq \emptyset$. Inspired by Alber [2], we introduce Lyapunov functions and use the new geometric properties of Banach spaces to show the strong convergence of an iterative algorithm to the solution of $Ax=0$.