{"title":"Reservoir Characterization for CO2 Sequestration: Assessing the Potential of the Devonian Carbonate Nisku Formation of Central Alberta","authors":"C. Eisinger, J. Jensen","doi":"10.2516/OGST/2010016","DOIUrl":null,"url":null,"abstract":"The Wabamun Lake area of Central Alberta, Canada includes several large CO2 point source emitters, collectively producing more than 30 Mt annually. Previous studies established that deep saline aquifers beneath the Wabamun Lake area have good potential for the large-scale injection and storage of CO2 . This study reports on the characterization of the Devonian carbonate Nisku Formation for evaluation as a CO2 repository. Major challenges for characterization included sparse well and seismic data, poor quality flow tests, and few modern measurements. Wireline porosity measurements were present in only one-third of the wells, so porosity and flow capacity (permeability-thickness) were estimated using wireline electrical measurements. The Archie cementation factor appears to vary between 2 and 3, creating uncertainty when predicting porosity using the electrical measurements; however, high-porosity zones could be identified. The electrically-based flow capacity predictions showed more favorable values using a correlation with core than the relation based on drill stem and production tests. This behavior is expected, since the flow test flow capacities are less influenced by local occurrences of very permeable vuggy and moldic rocks. Facies distributions were modeled using both pixel and object methods. The object models, using dimensions obtained from satellite imaging of modern day environments, gave results that were more consistent with the geological understanding of the Nisku and showed greater large-scale connectivity than the pixel model. Predicted volumes show considerable storage capacity in the Nisku, but flow simulations suggest injection capacities are below an initial 20 Mt/year target using vertical wells. More elaborate well designs, including fracture stimulation or multi-lateral wells may allow this goal to be reached or surpassed.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"60 1","pages":"47-65"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The Wabamun Lake area of Central Alberta, Canada includes several large CO2 point source emitters, collectively producing more than 30 Mt annually. Previous studies established that deep saline aquifers beneath the Wabamun Lake area have good potential for the large-scale injection and storage of CO2 . This study reports on the characterization of the Devonian carbonate Nisku Formation for evaluation as a CO2 repository. Major challenges for characterization included sparse well and seismic data, poor quality flow tests, and few modern measurements. Wireline porosity measurements were present in only one-third of the wells, so porosity and flow capacity (permeability-thickness) were estimated using wireline electrical measurements. The Archie cementation factor appears to vary between 2 and 3, creating uncertainty when predicting porosity using the electrical measurements; however, high-porosity zones could be identified. The electrically-based flow capacity predictions showed more favorable values using a correlation with core than the relation based on drill stem and production tests. This behavior is expected, since the flow test flow capacities are less influenced by local occurrences of very permeable vuggy and moldic rocks. Facies distributions were modeled using both pixel and object methods. The object models, using dimensions obtained from satellite imaging of modern day environments, gave results that were more consistent with the geological understanding of the Nisku and showed greater large-scale connectivity than the pixel model. Predicted volumes show considerable storage capacity in the Nisku, but flow simulations suggest injection capacities are below an initial 20 Mt/year target using vertical wells. More elaborate well designs, including fracture stimulation or multi-lateral wells may allow this goal to be reached or surpassed.