Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bin Chen, Bing Xu, P. Gong
{"title":"Mapping essential urban land use categories (EULUC) using geospatial big data: Progress, challenges, and opportunities","authors":"Bin Chen, Bing Xu, P. Gong","doi":"10.1080/20964471.2021.1939243","DOIUrl":null,"url":null,"abstract":"ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"27 1","pages":"410 - 441"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1939243","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 29

Abstract

ABSTRACT Urban land use information that reflects socio-economic functions and human activities is critically essential for urban planning, landscape design, environmental management, health promotion, and biodiversity conservation. Land-use maps outlining the distribution, pattern, and composition of essential urban land use categories (EULUC) have facilitated a wide spectrum of applications and further triggered new opportunities in urban studies. New and improved Earth observations, algorithms, and advanced products for extracting thematic urban information, in association with emerging social sensing big data and auxiliary crowdsourcing datasets, all together offer great potentials to mapping fine-resolution EULUC from regional to global scales. Here we review the advances of EULUC mapping research and practices in terms of their data, methods, and applications. Based on the historical retrospect, we summarize the challenges and limitations of current EULUC studies regarding sample collection, mixed land use problem, data and model generalization, and large-scale mapping efforts. Finally, we propose and discuss future opportunities, including cross-scale mapping, optimal integration of multi-source features, global sample libraries from crowdsourcing approaches, advanced machine learning and ensembled classification strategy, open portals for data visualization and sharing, multi-temporal mapping of EULUC change, and implications in urban environmental studies, to facilitate multi-scale fine-resolution EULUC mapping research.
利用地理空间大数据绘制城市基本土地利用类别(EULUC):进展、挑战和机遇
反映社会经济功能和人类活动的城市土地利用信息对于城市规划、景观设计、环境管理、健康促进和生物多样性保护至关重要。土地利用地图概述了基本城市土地利用类别的分布、格局和组成,促进了广泛的应用,并进一步引发了城市研究的新机会。新的和改进的地球观测、算法和用于提取主题城市信息的先进产品,与新兴的社会传感大数据和辅助众包数据集相结合,共同为从区域到全球尺度的精细分辨率EULUC制图提供了巨大的潜力。本文从数据、方法和应用等方面综述了EULUC制图研究与实践的进展。在回顾历史的基础上,我们总结了当前EULUC研究在样本收集、混合土地利用问题、数据和模型推广以及大规模制图工作等方面的挑战和局限性。最后,我们提出并讨论了未来的机遇,包括跨尺度制图、多源特征的优化集成、来自众包方法的全球样本库、先进的机器学习和集成分类策略、数据可视化和共享的开放门户、EULUC变化的多时段制图以及对城市环境研究的启示,以促进多尺度精细分辨率EULUC制图研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信