Bicovariant differential calculi for finite global quotients

Pub Date : 2019-12-11 DOI:10.3336/gm.54.2.10
D. Pham
{"title":"Bicovariant differential calculi for finite global quotients","authors":"D. Pham","doi":"10.3336/gm.54.2.10","DOIUrl":null,"url":null,"abstract":"Let (M,G) be a finite global quotient, that is, a finite set M with an action by a finite group G. In this note, we classify all bicovariant first order differential calculi (FODCs) over the weak Hopf algebra k(G⋉M) ≃ k[G⋉M ], where G⋉M is the action groupoid associated to (M,G), and k[G ⋉M ] is the groupoid algebra of G ⋉ M . Specifically, we prove a necessary and sufficient condition for a FODC over k(G ⋉ M) to be bicovariant and then show that the isomorphism classes of bicovariant FODCs over k(G⋉M) are in one-to-one correspondence with subsets of a certain quotient space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let (M,G) be a finite global quotient, that is, a finite set M with an action by a finite group G. In this note, we classify all bicovariant first order differential calculi (FODCs) over the weak Hopf algebra k(G⋉M) ≃ k[G⋉M ], where G⋉M is the action groupoid associated to (M,G), and k[G ⋉M ] is the groupoid algebra of G ⋉ M . Specifically, we prove a necessary and sufficient condition for a FODC over k(G ⋉ M) to be bicovariant and then show that the isomorphism classes of bicovariant FODCs over k(G⋉M) are in one-to-one correspondence with subsets of a certain quotient space.
分享
查看原文
有限整体商的双变微分演算
设(M,G)是一个有限整体商,即一个有限群G的作用的有限集合M。本文对弱Hopf代数k(G ω M)≃k[G ω M]上的所有双协变一阶微分演算(FODCs)进行分类,其中G ω M是与(M,G)相关联的作用群,k[G ω M]是G ω的群代数。具体地说,我们证明了k(G × M)上的FODC是双协变的一个充分必要条件,并证明了k(G × M)上的双协变FODC的同构类与某商空间的子集是一一对应的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信