On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix

A. W. Davis
{"title":"On the Marginal Distributions of the Latent Roots of the Multivariate Beta Matrix","authors":"A. W. Davis","doi":"10.1214/AOMS/1177692399","DOIUrl":null,"url":null,"abstract":"On the marginal distributions of the latent roots of the multivariate beta matrix The marginal distributions of the latent roots of the multivariate beta matrix are shown to constitute a complete system of solutions of an ordinary differential equation (d.e.), which is related to the author's d.e. 's for Rotelling's generalized T 2 and Pillai's V(m) statistics. Similar results are o given for the latent roots of the multivariate F and Wishart matrices (E=I). Pillai's approximations to the distributions of the largest and smallest roots are interpreted as exact solutions, the contributions of higher order solutions being neglected. m ~(q-m-l) m ~(n-m-l) The marginal distributions of the individual £, have been investigated by ~ (1) (2) On the marginal distributions of the latent roots of the multivariate beta mattix* q,n ~ m. The latent roots £1 > • • • > £m > 0 of the multivariate beta matrix B = S(S+T)-l are well known to have the joint density function","PeriodicalId":50764,"journal":{"name":"Annals of Mathematical Statistics","volume":"23 1","pages":"1664-1670"},"PeriodicalIF":0.0000,"publicationDate":"1972-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/AOMS/1177692399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

On the marginal distributions of the latent roots of the multivariate beta matrix The marginal distributions of the latent roots of the multivariate beta matrix are shown to constitute a complete system of solutions of an ordinary differential equation (d.e.), which is related to the author's d.e. 's for Rotelling's generalized T 2 and Pillai's V(m) statistics. Similar results are o given for the latent roots of the multivariate F and Wishart matrices (E=I). Pillai's approximations to the distributions of the largest and smallest roots are interpreted as exact solutions, the contributions of higher order solutions being neglected. m ~(q-m-l) m ~(n-m-l) The marginal distributions of the individual £, have been investigated by ~ (1) (2) On the marginal distributions of the latent roots of the multivariate beta mattix* q,n ~ m. The latent roots £1 > • • • > £m > 0 of the multivariate beta matrix B = S(S+T)-l are well known to have the joint density function
多元β矩阵隐根的边际分布
关于多元β矩阵的隐根的边际分布证明了多元β矩阵的隐根的边际分布构成了一个常微分方程的完整解系,这与作者的微分方程有关。Rotelling的广义T 2和Pillai的V(m)统计量。对于多元F和Wishart矩阵(E=I)的隐根,也给出了类似的结果。皮莱对最大和最小根分布的近似被解释为精确解,高阶解的贡献被忽略。m ~(q-m-l) m ~(n-m-l)通过~(1)(2)对多元β矩阵* q,n ~ m的潜根的边际分布进行了研究。多元β矩阵B = S(S+T)-l的潜根£1 >•••>£m >众所周知具有联合密度函数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信