{"title":"Electrocaloric properties of Sr and Sn doped BCZT lead-free ceramics","authors":"S. Patel, Manish Kumar","doi":"10.1051/epjap/2020200165","DOIUrl":null,"url":null,"abstract":"In the present work, the electrocaloric (EC) effect in lead-free Sr and Sn doped (Ba0.85 Ca0.075 Sr0.075 )(Zr0.1 Ti0.88 Sn0.02 )O3 ceramic prepared by solid-state method has been investigated. The phase purity and pure perovskite phase formation with Sr and Sn doping is confirmed by X-ray diffraction. The adiabatic temperature change ΔT (due to the EC effect), entropy change (ΔS) and refrigeration capacity (RC) are estimated under various electric fields. The maximum peak values of ΔT, ΔS and RC are found as 1.5 K, 1.8 J/kg.K and 2.75 J/kg, respectively under the applied electric field of 33 kV/cm at 305 K. It is also observed that the ΔT, ΔS and RC decreases with an increase in applied temperature. Moreover, the estimated values of EC properties are significantly high which indicates that fabrication of Sr and Sn doped lead-free ceramics can be advantageous for EC applications.","PeriodicalId":12228,"journal":{"name":"European Physical Journal-applied Physics","volume":"1 1","pages":"20905"},"PeriodicalIF":0.9000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Physical Journal-applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/epjap/2020200165","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
In the present work, the electrocaloric (EC) effect in lead-free Sr and Sn doped (Ba0.85 Ca0.075 Sr0.075 )(Zr0.1 Ti0.88 Sn0.02 )O3 ceramic prepared by solid-state method has been investigated. The phase purity and pure perovskite phase formation with Sr and Sn doping is confirmed by X-ray diffraction. The adiabatic temperature change ΔT (due to the EC effect), entropy change (ΔS) and refrigeration capacity (RC) are estimated under various electric fields. The maximum peak values of ΔT, ΔS and RC are found as 1.5 K, 1.8 J/kg.K and 2.75 J/kg, respectively under the applied electric field of 33 kV/cm at 305 K. It is also observed that the ΔT, ΔS and RC decreases with an increase in applied temperature. Moreover, the estimated values of EC properties are significantly high which indicates that fabrication of Sr and Sn doped lead-free ceramics can be advantageous for EC applications.
期刊介绍:
EPJ AP an international journal devoted to the promotion of the recent progresses in all fields of applied physics.
The articles published in EPJ AP span the whole spectrum of applied physics research.