F. Arabpur, M. Jafarpour, M. Aminizadeh, Š. Hošková-Mayerová
{"title":"On geometric polygroups","authors":"F. Arabpur, M. Jafarpour, M. Aminizadeh, Š. Hošková-Mayerová","doi":"10.2478/auom-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce a geodesic metric space called generalized Cayley graph (gCay(P,S)) on a finitely generated polygroup. We define a hyperaction of polygroup on gCayley graph and give some properties of this hyperaction. We show that gCayley graphs of a polygroup by two different generators are quasi-isometric. Finally, we express a connection between finitely generated polygroups and geodesic metric spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In this paper, we introduce a geodesic metric space called generalized Cayley graph (gCay(P,S)) on a finitely generated polygroup. We define a hyperaction of polygroup on gCayley graph and give some properties of this hyperaction. We show that gCayley graphs of a polygroup by two different generators are quasi-isometric. Finally, we express a connection between finitely generated polygroups and geodesic metric spaces.