{"title":"Local calcium changes regulate the length of growth cone filopodia.","authors":"Su Cheng, Matthew S. Geddis, V. Rehder","doi":"10.1002/NEU.10027","DOIUrl":null,"url":null,"abstract":"Previous studies have demonstrated that the free intracellular calcium concentration ([Ca(2+)](i)) in growth cones can act as an important regulator of growth cone behavior. Here we investigated whether there is a spatial and temporal correlation between [Ca(2+)](i) and one particular aspect of growth cone behavior, namely the regulation of growth cone filopodia. Calcium was released from the caged compound NP-EGTA (o-nitrophenyl EGTA tetrapotassium salt) to simulate a signaling event in the form of a transient increase in [Ca(2+)](i). In three different experimental paradigms, we released calcium either globally (within an entire growth cone), regionally (within a small area of the lamellipodium), or locally (within a single filopodium). We demonstrate that global photolysis of NP-EGTA in growth cones caused a transient increase in [Ca(2+)](i) throughout the growth cone and elicited subsequent filopodial elongation that was restricted to the stimulated growth cone. Pharmacological blockage of either calmodulin or the Ca(2+)-dependent phosphatase, calcineurin, inhibited the effect of uncaging calcium, suggesting that these enzymes are acting downstream of calcium. Regional uncaging of calcium in the lamellipodium caused a regional increase in [Ca(2+)](i), but induced filopodial elongation on the entire growth cone. Elevation of [Ca(2+)](i) locally within an individual filopodium resulted in the elongation of only the stimulated filopodium. These findings suggest that the effect of an elevation of [Ca(2+)](i) on filopodial behavior depends on the spatial distribution of the calcium signal. In particular, calcium signals within filopodia can cause filopodial length changes that are likely a first step towards directed filopodial steering events seen during pathfinding in vivo.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"78 5 Pt 1 1","pages":"263-75"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/NEU.10027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Previous studies have demonstrated that the free intracellular calcium concentration ([Ca(2+)](i)) in growth cones can act as an important regulator of growth cone behavior. Here we investigated whether there is a spatial and temporal correlation between [Ca(2+)](i) and one particular aspect of growth cone behavior, namely the regulation of growth cone filopodia. Calcium was released from the caged compound NP-EGTA (o-nitrophenyl EGTA tetrapotassium salt) to simulate a signaling event in the form of a transient increase in [Ca(2+)](i). In three different experimental paradigms, we released calcium either globally (within an entire growth cone), regionally (within a small area of the lamellipodium), or locally (within a single filopodium). We demonstrate that global photolysis of NP-EGTA in growth cones caused a transient increase in [Ca(2+)](i) throughout the growth cone and elicited subsequent filopodial elongation that was restricted to the stimulated growth cone. Pharmacological blockage of either calmodulin or the Ca(2+)-dependent phosphatase, calcineurin, inhibited the effect of uncaging calcium, suggesting that these enzymes are acting downstream of calcium. Regional uncaging of calcium in the lamellipodium caused a regional increase in [Ca(2+)](i), but induced filopodial elongation on the entire growth cone. Elevation of [Ca(2+)](i) locally within an individual filopodium resulted in the elongation of only the stimulated filopodium. These findings suggest that the effect of an elevation of [Ca(2+)](i) on filopodial behavior depends on the spatial distribution of the calcium signal. In particular, calcium signals within filopodia can cause filopodial length changes that are likely a first step towards directed filopodial steering events seen during pathfinding in vivo.