On global convergence of forced nonlinear delay differential equations and applications

D. Hai, C. Qian
{"title":"On global convergence of forced nonlinear delay differential equations and applications","authors":"D. Hai, C. Qian","doi":"10.7153/DEA-09-02","DOIUrl":null,"url":null,"abstract":"Consider the following nonlinear delay differential equation with a forcing term r(t) : x′(t)+a(t)x(t)+b(t) f (x(t − τ(t))) = r(t), t 0, where a ∈ C[[0,∞), [0,∞)] , b,τ ∈C[[0,∞),(0,∞)] , r ∈C[[0,∞),R] , f ∈ C[(L,∞),(L,∞)] with −∞ L 0 , and limt→∞(t − τ(t)) = ∞ . We establish a sufficient condition for every solution of the equation to converge to zero. By applying the result to some special cases and differential equation models from applications, we obtain several new criteria on the global convergence of solutions.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"17 1","pages":"13-28"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider the following nonlinear delay differential equation with a forcing term r(t) : x′(t)+a(t)x(t)+b(t) f (x(t − τ(t))) = r(t), t 0, where a ∈ C[[0,∞), [0,∞)] , b,τ ∈C[[0,∞),(0,∞)] , r ∈C[[0,∞),R] , f ∈ C[(L,∞),(L,∞)] with −∞ L 0 , and limt→∞(t − τ(t)) = ∞ . We establish a sufficient condition for every solution of the equation to converge to zero. By applying the result to some special cases and differential equation models from applications, we obtain several new criteria on the global convergence of solutions.
强迫非线性时滞微分方程的全局收敛性及其应用
考虑下面的非线性时滞微分方程与强迫项r (t): x (t) + (t) x (t) + b (t) f (x (t−τ(t))) = r (t) t 0,在∈C[[0,∞),[0,∞)],b,τ∈C[[0,∞),(0,∞)],C r∈([0,∞),r], f∈C [(L,∞)(L,∞)]与−∞L 0,和limt→∞(t−τ(t)) =∞。我们建立了方程的每一个解收敛于零的充分条件。将结果应用于一些特殊情况和应用中的微分方程模型,得到了解全局收敛的几个新判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信