Norm inequalities for the difference between weighted and integral means of operator differentiable functions

IF 0.5 Q3 MATHEMATICS
S. Dragomir
{"title":"Norm inequalities for the difference between weighted and integral means of operator differentiable functions","authors":"S. Dragomir","doi":"10.5817/am2020-3-183","DOIUrl":null,"url":null,"abstract":"in the operator order, for all 2 [0; 1] and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I: Notice that a function f is operator concave if f is operator convex. A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., A B with Sp (A) ;Sp (B) I imply f (A) f (B) : For some fundamental results on operator convex (operator concave) and operator monotone functions, see [9] and the references therein. As examples of such functions, we note that f (t) = t is operator monotone on [0;1) if and only if 0 r 1: The function f (t) = t is operator convex on (0;1) if either 1 r 2 or 1 r 0 and is operator concave on (0;1) if 0 r 1: The logarithmic function f (t) = ln t is operator monotone and operator concave on (0;1): The entropy function f (t) = t ln t is operator concave on (0;1): The exponential function f (t) = e is neither operator convex nor operator monotone.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2020-3-183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

in the operator order, for all 2 [0; 1] and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I: Notice that a function f is operator concave if f is operator convex. A real valued continuous function f on an interval I is said to be operator monotone if it is monotone with respect to the operator order, i.e., A B with Sp (A) ;Sp (B) I imply f (A) f (B) : For some fundamental results on operator convex (operator concave) and operator monotone functions, see [9] and the references therein. As examples of such functions, we note that f (t) = t is operator monotone on [0;1) if and only if 0 r 1: The function f (t) = t is operator convex on (0;1) if either 1 r 2 or 1 r 0 and is operator concave on (0;1) if 0 r 1: The logarithmic function f (t) = ln t is operator monotone and operator concave on (0;1): The entropy function f (t) = t ln t is operator concave on (0;1): The exponential function f (t) = e is neither operator convex nor operator monotone.
算子可微函数的加权均值与积分均值之差的范数不等式
按运算符顺序,对于所有2 [0;1]对于希尔伯特空间H上谱包含在I中的每一个自伴随算子A和B:注意,如果函数f是算子凸,则函数f是算子凹。如果区间I上的实值连续函数f在算子阶上单调,即A B与Sp (A)单调,则称其为算子单调;Sp (B) I暗示f (A) f (B):关于算子凸(算子凹)和算子单调函数的一些基本结果,见[9]及其参考文献。作为此类功能的示例,我们注意到f (t) = t运营商单调在(0,1)当且仅当r 0 1:函数f (t) = t算子凸在(0,1)如果1 r 2或1 0和运营商凹在(0,1)如果0 r 1:对数函数f (t) = ln t运营商单调和运营商凹(0,1):熵函数f (t) = t ln t运营商凹在(0,1):指数函数f (t) = e是单调算子凸和运营商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信