Gröbner bases and multi-dimensional persistent bifurcation diagram classifications

M. Gazor, A. Hashemi, Mahsa Kazemi
{"title":"Gröbner bases and multi-dimensional persistent bifurcation diagram classifications","authors":"M. Gazor, A. Hashemi, Mahsa Kazemi","doi":"10.1145/3338637.3338640","DOIUrl":null,"url":null,"abstract":"The work presented here is motivated by our ongoing project on symbolic bifurcation analysis of multidimensional germs of singularities, say\n [EQUATION]\n where <i>z</i> and λ denote the state variables and a distinguished parameter, respectively. A local solution <i>Z</i>(λ) for <i>f</i>(<i>Z</i>(λ), λ) = 0 is called a <i>bifurcation diagram.</i> Any two bifurcation diagrams <i>Z</i><sub>1</sub>(λ) and <i>Z</i><sub>2</sub>(λ) of <i>f</i> (<i>z</i>, λ) are called qualitatively equivalent when there exists a diffeomorphism (Φ(<i>Z</i><sub>1</sub>, λ<sub>1</sub>), Λ(λ<sub>1</sub>)) transforming the bifurcation diagram <i>Z</i><sub>1</sub>(λ<sub>1</sub>) into <i>Z</i><sub>2</sub>(λ<sub>2</sub>) = Φ(<i>Z</i><sub>1</sub>(Λ<sup>-1</sup>(lD<sub>2</sub>)), Λ<sup>-1</sup>(λ<sub>2</sub>)). Our proposed bifurcation analysis often corresponds to steady state bifurcations of PDEs, static and dynamical systems and occur in many real life and engineering control problems [5]. This will be integrated into the Singularity library [3, 4] as MultiDimSingularities module. Our library provides systematic tools for symbolic treatment of bifurcation analysis of such systems. The classical approach uses root finding and parametric continuation methods through numerical normal form analysis for differential systems with low codimension (degeneracy). The latter fails on comprehensive analysis for a parametric system and for systems with moderate degeneracies. The goal here is to classify the qualitatively different bifurcation diagrams of an <i>unfolding</i> germ\n [EQUATION],\n for <i>f</i> (<i>z</i>, λ), where α = (α<sub>1</sub>,...,α<sub><i>p</i></sub>) are unfolding parameters and <i>F</i>(<i>z</i>, λ, 0) = <i>f</i>(<i>z</i>, λ). This classification is feasible via the concept of persistent bifurcation diagrams. A diagram is called <i>persistent</i> when it is qualitatively self-equivalent under arbitrarily small perturbations. The idea is to find <i>non-persistent</i> sources of bifurcations. Non-persistent sources are divided into three categories: <i>bifurcation B, hysteresis H and double limit point D</i>; see [6, Page 410]. The set [EQUATION] is called a <i>transition local variety</i>, that is a codimension-1 hyperplane in the parameter space. A <i>local variety</i> refers to a neighborhood subset of zeros of a polynomial system. The complement space of this hyperplane consists of a finite number of connected components, say <i>C</i><sub>1</sub>, ..., <i>C<sub>n</sub></i>. For any <i>i</i> and α, β ∈ <i>C<sub>i</sub></i>, the bifurcation diagrams <i>Z</i>(λ, α) and <i>Z</i>(λ, β) are qualitatively equivalent. Hence, a choice of bifurcation diagram from each connected component gives rise to a complete list of <i>persistent bifurcation diagram classifications</i> for <i>F</i>(<i>z</i>, λ, α). The RegularChains library in Maple provides a tool through the command CylindricalAlgebraicDecompose enabling us to generate this list; see [1]. However, there usually exist multiple bifurcation diagrams from each connected component <i>C<sub>i</sub></i> in the generating list. In this abstract paper, we merely focus on the use of <i>Gröbner basis</i> for multi-dimensional persistent bifurcation diagram classifications.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"85 1","pages":"120-122"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338637.3338640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The work presented here is motivated by our ongoing project on symbolic bifurcation analysis of multidimensional germs of singularities, say [EQUATION] where z and λ denote the state variables and a distinguished parameter, respectively. A local solution Z(λ) for f(Z(λ), λ) = 0 is called a bifurcation diagram. Any two bifurcation diagrams Z1(λ) and Z2(λ) of f (z, λ) are called qualitatively equivalent when there exists a diffeomorphism (Φ(Z1, λ1), Λ(λ1)) transforming the bifurcation diagram Z11) into Z22) = Φ(Z1-1(lD2)), Λ-12)). Our proposed bifurcation analysis often corresponds to steady state bifurcations of PDEs, static and dynamical systems and occur in many real life and engineering control problems [5]. This will be integrated into the Singularity library [3, 4] as MultiDimSingularities module. Our library provides systematic tools for symbolic treatment of bifurcation analysis of such systems. The classical approach uses root finding and parametric continuation methods through numerical normal form analysis for differential systems with low codimension (degeneracy). The latter fails on comprehensive analysis for a parametric system and for systems with moderate degeneracies. The goal here is to classify the qualitatively different bifurcation diagrams of an unfolding germ [EQUATION], for f (z, λ), where α = (α1,...,αp) are unfolding parameters and F(z, λ, 0) = f(z, λ). This classification is feasible via the concept of persistent bifurcation diagrams. A diagram is called persistent when it is qualitatively self-equivalent under arbitrarily small perturbations. The idea is to find non-persistent sources of bifurcations. Non-persistent sources are divided into three categories: bifurcation B, hysteresis H and double limit point D; see [6, Page 410]. The set [EQUATION] is called a transition local variety, that is a codimension-1 hyperplane in the parameter space. A local variety refers to a neighborhood subset of zeros of a polynomial system. The complement space of this hyperplane consists of a finite number of connected components, say C1, ..., Cn. For any i and α, β ∈ Ci, the bifurcation diagrams Z(λ, α) and Z(λ, β) are qualitatively equivalent. Hence, a choice of bifurcation diagram from each connected component gives rise to a complete list of persistent bifurcation diagram classifications for F(z, λ, α). The RegularChains library in Maple provides a tool through the command CylindricalAlgebraicDecompose enabling us to generate this list; see [1]. However, there usually exist multiple bifurcation diagrams from each connected component Ci in the generating list. In this abstract paper, we merely focus on the use of Gröbner basis for multi-dimensional persistent bifurcation diagram classifications.
Gröbner基和多维持久分岔图分类
这里提出的工作是由我们正在进行的关于奇点多维芽的符号分岔分析的项目所激发的,例如[等式],其中z和λ分别表示状态变量和一个区分参数。对于f(Z(λ), λ) = 0的局部解Z(λ)称为分岔图。当存在微分同态(Φ(Z1, λ), Λ(λ))时,f (z, λ)的任意两个分岔图Z1(λ)和Z2(λ)称为定性等价,将分岔图Z1(λ)转化为Z2(λ) = Φ(Z1(Λ-1(lD2)), Λ-1(λ))。我们提出的分岔分析通常对应于偏微分方程、静态和动态系统的稳态分岔,并出现在许多现实生活和工程控制问题中[5]。这将被集成到Singularity库[3,4]中,作为multidimsingularity模块。我们的库为这类系统的分岔分析的符号处理提供了系统的工具。经典方法通过对低协维(简并)微分系统的数值范式分析,采用寻根和参数延拓方法。后者不能对参数系统和具有中度退化的系统进行综合分析。这里的目标是对展开胚的不同分岔图进行定性分类[方程],对于f(z, λ),其中α = (α1,…,αp)是展开参数,f(z, λ, 0) = f(z, λ)。通过持久分岔图的概念,这种分类是可行的。当图在任意小的扰动下定性自等价时,它被称为持久图。这个想法是找到分叉的非持续性来源。将非持久源分为三大类:分岔B、滞后H和双极限点D;参见[6,第410页]。该集合[EQUATION]称为过渡局部变集,即参数空间中的余维-1超平面。局部变量是指多项式系统的零的邻域子集。这个超平面的补空间由有限个连通分量组成,比如C1,…Cn。对于任意i和α, β∈Ci,分岔图Z(λ, α)和Z(λ, β)在性质上是等价的。因此,从每个连接组件中选择分支图会产生F(z, λ, α)的持久分支图分类的完整列表。Maple中的正则archains库通过命令圆柱代数分解提供了一个工具,使我们能够生成这个列表;参见[1]。然而,在生成列表中,每个连接的组件Ci通常存在多个分支图。在这篇抽象的论文中,我们只关注使用Gröbner基对多维持久分岔图进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信