Identifying Co-expressed miRNAs using Multiobjective Optimization

S. Acharya, S. Saha
{"title":"Identifying Co-expressed miRNAs using Multiobjective Optimization","authors":"S. Acharya, S. Saha","doi":"10.1109/ICIT.2014.69","DOIUrl":null,"url":null,"abstract":"The micro RNAs or miRNAs are short non-coding RNAs, which are capable in regulating gene expression in post-transcriptional level. A huge volume of data is generated by expression profiling of miRNAs. From various studies it has been proved that a large proportion of miRNAs tend to form clusters on chromosome. So, in this article we are proposing a multi-objective optimization based clustering algorithm for extraction of relevant information from expression data of miRNA. The proposed method integrates the ability of point symmetry based distance and existing Multi-objective optimization based clustering technique-AMOSA to identify co-regulated or co-expressed miRNA clusters. The superiority of our proposed approach by comparing it with other state-of-the-art clustering methods, is demonstrated on two publicly available miRNA expression data sets using Davies-Bouldin index - an external cluster validity index.","PeriodicalId":6486,"journal":{"name":"2014 17th International Conference on Computer and Information Technology (ICCIT)","volume":"25 1","pages":"245-250"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 17th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The micro RNAs or miRNAs are short non-coding RNAs, which are capable in regulating gene expression in post-transcriptional level. A huge volume of data is generated by expression profiling of miRNAs. From various studies it has been proved that a large proportion of miRNAs tend to form clusters on chromosome. So, in this article we are proposing a multi-objective optimization based clustering algorithm for extraction of relevant information from expression data of miRNA. The proposed method integrates the ability of point symmetry based distance and existing Multi-objective optimization based clustering technique-AMOSA to identify co-regulated or co-expressed miRNA clusters. The superiority of our proposed approach by comparing it with other state-of-the-art clustering methods, is demonstrated on two publicly available miRNA expression data sets using Davies-Bouldin index - an external cluster validity index.
利用多目标优化技术鉴定共表达mirna
微rna或mirna是短链非编码rna,能够在转录后水平调控基因表达。mirna的表达谱分析产生了大量的数据。各种研究已经证明,很大一部分mirna倾向于在染色体上形成簇。因此,本文提出了一种基于多目标优化的聚类算法,用于从miRNA表达数据中提取相关信息。该方法结合了基于点对称距离的能力和现有的基于多目标优化的聚类技术- amosa来识别共调控或共表达的miRNA簇。通过与其他最先进的聚类方法进行比较,我们提出的方法的优越性在使用Davies-Bouldin指数(外部聚类有效性指数)的两个公开可用的miRNA表达数据集上得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信