A novel crossover operator for genetic algorithm: Stas crossover

IF 1.4 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Ratchadakorn Poohoi, Kanate Puntusavase, S. Ohmori
{"title":"A novel crossover operator for genetic algorithm: Stas crossover","authors":"Ratchadakorn Poohoi, Kanate Puntusavase, S. Ohmori","doi":"10.5267/j.dsl.2023.4.010","DOIUrl":null,"url":null,"abstract":"The genetic algorithm (GA) is a natural selection-inspired optimization algorithm. It is a population-based search algorithm that utilizes the concept of survival of the fittest. This study creates a new crossover operator called “Stas Crossover” that is a combination of four crossover operators, including Single point crossover, Two points crossover, Arithmetic crossover, and Scattered crossover, and then presents the performance of this crossover operator. The area size and probability of Stas crossover can be adjusted.GA is used to find the optimal solution for this multi-product and multi-period aggregate production planning (APP) problem, which was used to test the algorithm, which provides optimal levels of inventory, backorders, overtime and regular production rates, and other controllable variables. According to the findings of this study, the benefit of stable crossover is that it allows for more variety in the way offspring are created and increases the opportunity for offspring to obtain good genetic information directly.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2023.4.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic algorithm (GA) is a natural selection-inspired optimization algorithm. It is a population-based search algorithm that utilizes the concept of survival of the fittest. This study creates a new crossover operator called “Stas Crossover” that is a combination of four crossover operators, including Single point crossover, Two points crossover, Arithmetic crossover, and Scattered crossover, and then presents the performance of this crossover operator. The area size and probability of Stas crossover can be adjusted.GA is used to find the optimal solution for this multi-product and multi-period aggregate production planning (APP) problem, which was used to test the algorithm, which provides optimal levels of inventory, backorders, overtime and regular production rates, and other controllable variables. According to the findings of this study, the benefit of stable crossover is that it allows for more variety in the way offspring are created and increases the opportunity for offspring to obtain good genetic information directly.
一种新的遗传算法交叉算子:Stas交叉
遗传算法是一种基于自然选择的优化算法。这是一种基于群体的搜索算法,利用了适者生存的概念。本文提出了一种新的交叉算子“Stas交叉算子”,它由单点交叉算子、两点交叉算子、算术交叉算子和分散交叉算子四种交叉算子组合而成,并介绍了该交叉算子的性能。区域大小和Stas交叉的概率可以调整。利用遗传算法求解多产品多周期总生产计划(APP)问题的最优解,并对算法进行验证,该算法提供了库存、缺货、加班率和正常生产率等可控变量的最优水平。根据这项研究的发现,稳定杂交的好处在于,它允许在后代的创造方式上有更多的多样性,并增加了后代直接获得良好遗传信息的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Science Letters
Decision Science Letters Decision Sciences-Decision Sciences (all)
CiteScore
3.40
自引率
5.30%
发文量
49
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信